Suppr超能文献

ACL-DUNet:一种基于多注意力和密集连接的乳腺超声图像的肿瘤分割方法。

ACL-DUNet: A tumor segmentation method based on multiple attention and densely connected breast ultrasound images.

机构信息

School of Computer Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.

Department of Electronic Engineering, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China.

出版信息

PLoS One. 2024 Nov 1;19(11):e0307916. doi: 10.1371/journal.pone.0307916. eCollection 2024.

Abstract

Breast cancer is the most common cancer in women. Breast masses are one of the distinctive signs for diagnosing breast cancer, and ultrasound is widely used for screening as a non-invasive and effective method for breast examination. In this study, we used the Mendeley and BUSI datasets, comprising 250 images (100 benign, 150 malignant) and 780 images (133 normal, 487 benign, 210 malignant), respectively. The datasets were split into 80% for training and 20% for validation. The accurate measurement and characterization of different breast tumors play a crucial role in guiding clinical decision-making. The area and shape of the different breast tumors detected are critical for clinicians to make accurate diagnostic decisions. In this study, a deep learning method for mass segmentation in breast ultrasound images is proposed, which uses densely connected U-net with attention gates (AGs) as well as channel attention modules and scale attention modules for accurate breast tumor segmentation.The densely connected network is employed in the encoding stage to enhance the network's feature extraction capabilities. Three attention modules are integrated in the decoding stage to better capture the most relevant features. After validation on the Mendeley and BUSI datasets, the experimental results demonstrate that our method achieves a Dice Similarity Coefficient (DSC) of 0.8764 and 0.8313, respectively, outperforming other deep learning approaches. The source code is located at github.com/zhanghaoCV/plos-one.

摘要

乳腺癌是女性最常见的癌症。乳房肿块是诊断乳腺癌的一个显著特征,超声检查作为一种非侵入性且有效的乳房检查方法被广泛应用于筛查。在本研究中,我们使用了 Mendeley 和 BUSI 数据集,分别包含 250 张图像(100 张良性,150 张恶性)和 780 张图像(133 张正常,487 张良性,210 张恶性)。数据集被分为 80%用于训练和 20%用于验证。

对不同乳腺肿瘤的准确测量和特征描述对于指导临床决策至关重要。不同乳腺肿瘤的大小和形状对于临床医生做出准确的诊断决策至关重要。在本研究中,我们提出了一种用于乳腺超声图像肿块分割的深度学习方法,该方法使用具有注意力门(AGs)的密集连接 U-Net 以及通道注意力模块和尺度注意力模块来实现精确的乳腺肿瘤分割。密集连接网络被应用于编码阶段,以增强网络的特征提取能力。三个注意力模块被集成到解码阶段,以更好地捕捉最相关的特征。在 Mendeley 和 BUSI 数据集上进行验证后,实验结果表明,我们的方法分别取得了 0.8764 和 0.8313 的 Dice 相似系数(DSC),优于其他深度学习方法。代码位于 github.com/zhanghaoCV/plos-one。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17f1/11530038/4f628cf0e18f/pone.0307916.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验