Suppr超能文献

超越衬底:铁电薄膜的应变工程

Beyond Substrates: Strain Engineering of Ferroelectric Membranes.

作者信息

Pesquera David, Parsonnet Eric, Qualls Alexander, Xu Ruijuan, Gubser Andrew J, Kim Jieun, Jiang Yizhe, Velarde Gabriel, Huang Yen-Lin, Hwang Harold Y, Ramesh Ramamoorthy, Martin Lane W

机构信息

Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.

Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain.

出版信息

Adv Mater. 2020 Oct;32(43):e2003780. doi: 10.1002/adma.202003780. Epub 2020 Sep 22.

Abstract

Strain engineering in perovskite oxides provides for dramatic control over material structure, phase, and properties, but is restricted by the discrete strain states produced by available high-quality substrates. Here, using the ferroelectric BaTiO , production of precisely strain-engineered, substrate-released nanoscale membranes is demonstrated via an epitaxial lift-off process that allows the high crystalline quality of films grown on substrates to be replicated. In turn, fine structural tuning is achieved using interlayer stress in symmetric trilayer oxide-metal/ferroelectric/oxide-metal structures fabricated from the released membranes. In devices integrated on silicon, the interlayer stress provides deterministic control of ordering temperature (from 75 to 425 °C) and releasing the substrate clamping is shown to dramatically impact ferroelectric switching and domain dynamics (including reducing coercive fields to <10 kV cm and improving switching times to <5 ns for a 20 µm diameter capacitor in a 100-nm-thick film). In devices integrated on flexible polymers, enhanced room-temperature dielectric permittivity with large mechanical tunability (a 90% change upon ±0.1% strain application) is demonstrated. This approach paves the way toward the fabrication of ultrafast CMOS-compatible ferroelectric memories and ultrasensitive flexible nanosensor devices, and it may also be leveraged for the stabilization of novel phases and functionalities not achievable via direct epitaxial growth.

摘要

钙钛矿氧化物中的应变工程可对材料结构、相和性能进行显著控制,但受到现有高质量衬底产生的离散应变状态的限制。在此,利用铁电体钛酸钡,通过外延剥离工艺展示了精确应变工程化、与衬底分离的纳米级薄膜的制备,该工艺能够复制在衬底上生长的高质量晶体薄膜。反过来,利用由释放的薄膜制成的对称三层氧化物-金属/铁电体/氧化物-金属结构中的层间应力实现精细的结构调控。在集成于硅上的器件中,层间应力可对有序温度进行确定性控制(从75℃至425℃),并且显示出释放衬底夹持会显著影响铁电开关和畴动力学(对于100纳米厚薄膜中直径为20微米的电容器,可将矫顽场降低至<10千伏/厘米,并将开关时间缩短至<5纳秒)。在集成于柔性聚合物上的器件中,展示出具有大机械可调性的增强室温介电常数(在施加±0.1%应变时变化90%)。这种方法为制造超快CMOS兼容铁电存储器和超灵敏柔性纳米传感器器件铺平了道路,并且还可用于稳定通过直接外延生长无法实现的新相和新功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验