Suppr超能文献

HiDDEN:一种用于检测病例对照单细胞转录组学数据中与疾病相关群体的机器学习方法。

HiDDEN: a machine learning method for detection of disease-relevant populations in case-control single-cell transcriptomics data.

机构信息

Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.

CSAIL and IMES, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nat Commun. 2024 Nov 2;15(1):9468. doi: 10.1038/s41467-024-53666-8.

Abstract

In case-control single-cell RNA-seq studies, sample-level labels are transferred onto individual cells, labeling all case cells as affected, when in reality only a small fraction of them may actually be perturbed. Here, using simulations, we demonstrate that the standard approach to single cell analysis fails to isolate the subset of affected case cells and their markers when either the affected subset is small, or when the strength of the perturbation is mild. To address this fundamental limitation, we introduce HiDDEN, a computational method that refines the case-control labels to accurately reflect the perturbation status of each cell. We show HiDDEN's superior ability to recover biological signals missed by the standard analysis workflow in simulated ground truth datasets of cell type mixtures. When applied to a dataset of human multiple myeloma precursor conditions, HiDDEN recapitulates the expert manual annotation and discovers malignancy in early stage samples missed in the original analysis. When applied to a mouse model of demyelination, HiDDEN identifies an endothelial subpopulation playing a role in early stage blood-brain barrier dysfunction. We anticipate that HiDDEN should find wide usage in contexts that require the detection of subtle transcriptional changes in cell types across conditions.

摘要

在病例对照单细胞 RNA-seq 研究中,样本水平的标签被转移到单个细胞上,将所有病例细胞标记为受影响的细胞,而实际上只有一小部分细胞可能受到影响。在这里,我们通过模拟实验表明,当受影响的亚组较小时,或者当干扰的强度较小时,标准的单细胞分析方法无法分离出受影响的病例细胞及其标志物。为了解决这个基本限制,我们引入了 HiDDEN,这是一种计算方法,可以细化病例对照标签,以准确反映每个细胞的干扰状态。我们展示了 HiDDEN 在模拟的细胞类型混合物的真实数据集上恢复标准分析工作流程错过的生物学信号的优越能力。当应用于人类多发性骨髓瘤前体条件的数据集时,HiDDEN 再现了专家手动注释,并发现了原始分析中遗漏的早期样本中的恶性肿瘤。当应用于脱髓鞘的小鼠模型时,HiDDEN 鉴定出一个在内皮亚群中在早期血脑屏障功能障碍中发挥作用。我们预计 HiDDEN 应该在需要在不同条件下检测细胞类型中细微转录变化的情况下得到广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b87/11530671/499daa53c63e/41467_2024_53666_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验