Suppr超能文献

量化单细胞分辨率下实验扰动的影响。

Quantifying the effect of experimental perturbations at single-cell resolution.

机构信息

Department of Genetics, Yale University, New Haven, CT, USA.

Computational Biology & Bioinformatics Program, Yale University, New Haven, CT, USA.

出版信息

Nat Biotechnol. 2021 May;39(5):619-629. doi: 10.1038/s41587-020-00803-5. Epub 2021 Feb 8.

Abstract

Current methods for comparing single-cell RNA sequencing datasets collected in multiple conditions focus on discrete regions of the transcriptional state space, such as clusters of cells. Here we quantify the effects of perturbations at the single-cell level using a continuous measure of the effect of a perturbation across the transcriptomic space. We describe this space as a manifold and develop a relative likelihood estimate of observing each cell in each of the experimental conditions using graph signal processing. This likelihood estimate can be used to identify cell populations specifically affected by a perturbation. We also develop vertex frequency clustering to extract populations of affected cells at the level of granularity that matches the perturbation response. The accuracy of our algorithm at identifying clusters of cells that are enriched or depleted in each condition is, on average, 57% higher than the next-best-performing algorithm tested. Gene signatures derived from these clusters are more accurate than those of six alternative algorithms in ground truth comparisons.

摘要

目前用于比较在多种条件下收集的单细胞 RNA 测序数据集的方法主要集中在转录状态空间的离散区域,例如细胞簇。在这里,我们使用跨转录组空间的扰动效应的连续度量来量化单细胞水平的扰动效应。我们将这个空间描述为一个流形,并使用图信号处理来开发在每个实验条件下观察每个细胞的相对似然估计。这个似然估计可以用来识别受到扰动影响的细胞群体。我们还开发了顶点频率聚类,以提取与扰动响应相匹配的受影响细胞群体。在识别每个条件下富集或耗尽的细胞簇方面,我们算法的准确性平均比测试的下一个表现最好的算法高出 57%。与六种替代算法相比,这些聚类衍生的基因特征在真实比较中更准确。

相似文献

1
Quantifying the effect of experimental perturbations at single-cell resolution.量化单细胞分辨率下实验扰动的影响。
Nat Biotechnol. 2021 May;39(5):619-629. doi: 10.1038/s41587-020-00803-5. Epub 2021 Feb 8.
5
Co-expression in Single-Cell Analysis: Saving Grace or Original Sin?单细胞分析中的共表达:救命稻草还是原罪?
Trends Genet. 2018 Nov;34(11):823-831. doi: 10.1016/j.tig.2018.07.007. Epub 2018 Aug 23.

引用本文的文献

2
A practical guide to sequencing in neuropsychiatric research.神经精神医学研究中的测序实用指南。
NPP Digit Psychiatry Neurosci. 2025;3(1):21. doi: 10.1038/s44277-025-00041-0. Epub 2025 Aug 8.

本文引用的文献

7
Visualizing structure and transitions in high-dimensional biological data.高维生物数据中的结构和转变可视化。
Nat Biotechnol. 2019 Dec;37(12):1482-1492. doi: 10.1038/s41587-019-0336-3. Epub 2019 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验