Suppr超能文献

比较 EKFC 方程和机器学习模型预测肾小球滤过率。

Comparison between the EKFC-equation and machine learning models to predict Glomerular Filtration Rate.

机构信息

Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium.

Itec, Imec Research Group at KU Leuven, Kortrijk, Belgium.

出版信息

Sci Rep. 2024 Nov 2;14(1):26383. doi: 10.1038/s41598-024-77618-w.

Abstract

In clinical practice, the glomerular filtration rate (GFR), a measurement of kidney functioning, is normally calculated using equations, such as the European Kidney Function Consortium (EKFC) equation. Despite being the most general equation, EKFC, just like previously proposed approaches, can still struggle to achieve satisfactory performance, limiting its clinical applicability. As a possible solution, recently machine learning (ML) has been investigated to improve GFR prediction, nonetheless the literature still lacks a general and multi-center study. Using a dataset with 19,629 patients from 13 cohorts, we investigate if ML can improve GFR prediction in comparison to EKFC. More specifically, we compare diverse ML methods, which were allowed to use age, sex, serum creatinine, cystatin C, height, weight and BMI as features, in internal and external cohorts against EKFC. The results show that the most performing ML method, random forest (RF), and EKFC are very competitive where RF and EKFC achieved respectively P10 and P30 values of 0.45 (95% CI 0.44;0.46) and 0.89 (95% CI 0.88;0.90), whereas EKFC yielded 0.44 (95% CI 0.43; 0.44) and 0.89 (95% CI 0.88; 0.90), considering the entire cohort. Small differences were, however, observed in patients younger than 12 years where RF slightly outperformed EKFC.

摘要

在临床实践中,肾小球滤过率(GFR)是衡量肾脏功能的一种指标,通常使用公式进行计算,如欧洲肾脏功能联盟(EKFC)公式。尽管 EKFC 是最通用的公式,但与之前提出的方法一样,它仍然难以达到令人满意的性能,限制了其临床适用性。作为一种可能的解决方案,最近已经研究了机器学习(ML)来改善 GFR 预测,但文献中仍然缺乏一项全面的多中心研究。我们使用来自 13 个队列的 19629 名患者的数据集,研究了 ML 是否可以改善与 EKFC 相比的 GFR 预测。更具体地说,我们比较了不同的 ML 方法,这些方法允许使用年龄、性别、血清肌酐、胱抑素 C、身高、体重和 BMI 作为特征,在内部和外部队列中与 EKFC 进行比较。结果表明,表现最好的 ML 方法随机森林(RF)和 EKFC 非常有竞争力,RF 和 EKFC 分别达到了 P10 和 P30 值 0.45(95%CI 0.44;0.46)和 0.89(95%CI 0.88;0.90),而 EKFC 在整个队列中分别达到了 0.44(95%CI 0.43;0.44)和 0.89(95%CI 0.88;0.90)。然而,在年龄小于 12 岁的患者中观察到了较小的差异,RF 略微优于 EKFC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17e7/11530427/7b0805c485be/41598_2024_77618_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验