Zhang Zhiwei, Wang Mengqiu, Dai Ruoyan, Wang Zhenghui, Lei Lixin, Zhao Xudong, Han Kaitai, Shi Chaojing, Guo Qianjin
Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
Life Sci. 2024 Dec 15;359:123208. doi: 10.1016/j.lfs.2024.123208. Epub 2024 Oct 31.
Advancements in Spatial Transcriptomics (ST) technologies in recent years have transformed the analysis of tissue structure and function within spatial contexts. However, accurately identifying spatial domains remains challenging due to data sparsity and noise. Traditional clustering methods often fail to capture spatial dependencies, while spatial clustering methods struggle with batch effects and data integration. We introduce GraphCVAE, a model designed to enhance spatial domain identification by integrating spatial and morphological information, correcting batch effects, and managing heterogeneous data. GraphCVAE employs a multi-layer Graph Convolutional Network (GCN) and a variational autoencoder to improve the representation and integration of spatial information. Through contrastive learning, the model captures subtle differences between cell types and states. Extensive testing on various ST datasets demonstrates GraphCVAE's robustness and biological contributions. In the dorsolateral prefrontal cortex (DLPFC) dataset, it accurately delineates cortical layer boundaries. In glioblastoma, GraphCVAE reveals critical therapeutic targets such as TF and NFIB. In colorectal cancer, it explores the role of the extracellular matrix in colorectal cancer. The model's performance metrics consistently surpass existing methods, validating its effectiveness. GraphCVAE's advanced visualization capabilities further highlight its precision in resolving spatial structures, making it a powerful tool for spatial transcriptomics analysis and offering new insights into disease studies.
近年来,空间转录组学(ST)技术的进步改变了在空间背景下对组织结构和功能的分析。然而,由于数据稀疏性和噪声,准确识别空间域仍然具有挑战性。传统的聚类方法往往无法捕捉空间依赖性,而空间聚类方法则难以处理批次效应和数据整合问题。我们引入了GraphCVAE,这是一种通过整合空间和形态学信息、校正批次效应以及管理异构数据来增强空间域识别的模型。GraphCVAE采用多层图卷积网络(GCN)和变分自编码器来改善空间信息的表示和整合。通过对比学习,该模型捕捉细胞类型和状态之间的细微差异。在各种ST数据集上的广泛测试证明了GraphCVAE的稳健性和生物学贡献。在背外侧前额叶皮层(DLPFC)数据集中,它准确地描绘了皮质层边界。在胶质母细胞瘤中,GraphCVAE揭示了关键的治疗靶点,如TF和NFIB。在结直肠癌中,它探索了细胞外基质在结直肠癌中的作用。该模型的性能指标始终超过现有方法,验证了其有效性。GraphCVAE先进的可视化功能进一步突出了其在解析空间结构方面的精确性,使其成为空间转录组学分析的强大工具,并为疾病研究提供了新的见解。