Suppr超能文献

增强 MRI 脑肿瘤分类:一种综合方法,集成真实场景模拟和增强技术。

Enhancing MRI brain tumor classification: A comprehensive approach integrating real-life scenario simulation and augmentation techniques.

机构信息

University of the Basque Country (UPV/EHU), San Sebastian, Spain; Lebanese International University (LIU), Beirut, Lebanon; Beirut International University (LIU), Beirut, Lebanon.

University of the Basque Country (UPV/EHU), San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.

出版信息

Phys Med. 2024 Nov;127:104841. doi: 10.1016/j.ejmp.2024.104841. Epub 2024 Nov 2.

Abstract

Brain cancer poses a significant global health challenge, with mortality rates showing a concerning surge over recent decades. The incidence of brain cancer-related mortality has risen from 140,000 to 250,000, accompanied by a doubling in new diagnoses from 175,000 to 350,000. In response, magnetic resonance imaging (MRI) has emerged as a pivotal diagnostic tool, facilitating early detection and treatment planning. However, the translation of deep learning approaches to brain cancer diagnosis faces a critical obstacle: the scarcity of public clinical datasets reflecting real-world complexities. This study aims to bridge this gap through a comprehensive exploration and augmentation of training data. Initially, a battery of pre-trained deep models undergoes evaluation on a main brain cancer MRI "BT-MRI" dataset, yielding remarkable performance metrics, including 100% accuracy, precision, recall, and F1-Score, substantiated by the Score-CAM methodology. This initial success underscores the potential of deep learning in brain cancer diagnosis. Subsequently, the model's efficacy undergoes further scrutiny using a supplementary brain cancer MRI "BCD-MRI" dataset, affirming its robustness and applicability across diverse datasets. However, the ultimate litmus test lies in confronting the model with synthetic testing datasets crafted to emulate real-world scenarios. The synthetic testing datasets, a BCD-MRI testing sub-dataset enriched with noise, blur, and simulated patient motion, reveal a sobering reality: the model's performance plummets, exposing inherent limitations in generalization. To address this issue, a diverse set of optimization strategies and augmentation techniques, ranging from diverse optimizers to sophisticated data augmentation methods, are exhaustively explored. Despite these efforts, the problem of generalization persists. The breakthrough emerges with the integration of noise and blur as augmentation techniques during the training process. Leveraging Gaussian noise and Gaussian blur kernels, the model undergoes a transformative evolution, exhibiting newfound robustness and resilience. Retesting the refined model against the challenging synthetic datasets reveals a remarkable transformation, with performance metrics witnessing a notable ascent. This achievement underscores the important role of correct selection of data augmentation in fortifying the generalization of deep learning models for brain cancer diagnosis. This study not only advances the frontiers of diagnostic precision in brain cancer but also underscores the paramount importance of methodological rigor and innovation in confronting the complexities of real-world clinical scenarios.

摘要

脑癌是一个全球性的重大健康挑战,死亡率在最近几十年呈令人担忧的上升趋势。脑癌相关死亡率已从 14 万上升到 25 万,新诊断病例数也从 17.5 万增加到 35 万,增加了一倍。为此,磁共振成像(MRI)已成为一种重要的诊断工具,有助于早期发现和治疗计划。然而,将深度学习方法应用于脑癌诊断面临一个关键障碍:缺乏反映现实复杂性的公共临床数据集。本研究旨在通过全面探索和扩充训练数据来弥合这一差距。

首先,一系列预训练的深度学习模型在主要的脑癌 MRI“BT-MRI”数据集上进行评估,结果显示出出色的性能指标,包括 100%的准确率、精确率、召回率和 F1-Score,这一结果得到了 Score-CAM 方法的验证。这一初步成功突显了深度学习在脑癌诊断中的潜力。

随后,使用补充的脑癌 MRI“BCD-MRI”数据集进一步检查模型的功效,证实了其在不同数据集之间的稳健性和适用性。然而,最终的检验标准在于使模型面对模拟真实场景的合成测试数据集。这些合成测试数据集是 BCD-MRI 测试子数据集,其中包含噪声、模糊和模拟患者运动,结果显示出令人清醒的现实:模型的性能大幅下降,暴露出其在泛化方面的固有局限性。

为了解决这个问题,我们广泛探索了各种优化策略和扩充技术,从不同的优化器到复杂的数据扩充方法。尽管做出了这些努力,但泛化问题仍然存在。突破出现在将噪声和模糊作为扩充技术整合到训练过程中。通过使用高斯噪声和高斯模糊核,模型经历了一场变革性的演变,表现出了新的稳健性和弹性。将经过改进的模型重新应用于具有挑战性的合成数据集,结果显示出显著的变化,性能指标明显上升。这一成就突显了正确选择数据扩充在强化脑癌诊断中深度学习模型的泛化能力方面的重要作用。

本研究不仅推进了脑癌诊断精度的前沿,还强调了在应对现实临床场景的复杂性时,方法学严谨性和创新性的至关重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验