Suppr超能文献

新型碲复合薄膜作为储能系统阳极应用的物理和电化学性能

Physical and electrochemical performances of novel tellurium composite films as anode applications in energy storage systems.

作者信息

Rana Md Masud, Chowdhury Mohammad Asaduzzaman, Alam Md Jonaidul, Khandaker Md Rifat, Ali Yusuf

机构信息

Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh.

Department of Chemical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh.

出版信息

Heliyon. 2024 Oct 9;10(20):e39083. doi: 10.1016/j.heliyon.2024.e39083. eCollection 2024 Oct 30.

Abstract

Portable electronic devices and electric cars use lithium-ion batteries, but clumping lithium alloys limit their lifespan. Due to their strong electronic conductivity, volumetric capacity, and high energy density, researchers are conducting research on electrochemical metal cells utilizing tellurium for high-performance batteries. Theoretically, lithium-tellurium batteries can improve energy densities three times more than lithium-ion batteries. However, metal-tellurium faces challenges such as low rate capability, unclear redox reactions, intermediate dissolution, and electrode volume changes. This study explores the enhancement of the energy storage capacity of next-generation batteries by fabricating coated electrode films as novel anodes from tellurium, silicon, and graphene. Physical, thermal, and morphological analysis of composite material are investigated by XRD, TEM, TGA, DSC, SEM, UV, and XPS analyses, revealing its rigidity as well as durability through its crystal structure alignment and thermal stability. In electrochemical analysis (CV) at various scan rates, samples that exhibit consistent and high specific capacity (Cp) values at different scan speeds (25, 50, and 100 mV/s) indicate excellent ability to store and maintain charge. Decreasing Cp values with increasing scan rates indicate that the speed of cycling limits the charge transfer kinetics and electrode performance. In EIS, the charge transfer resistances (R) for the pure Te, Te + Gr, Te + Si + Gr, and Te + Si samples are 759.07 Ω, 4.21 Ω, 36.39 Ω, and 164.90 Ω, respectively. The Te + Gr sample has the lowest R, indicating the best charge transfer efficiency at the electrode contact, whereas the Te + Si + Gr sample has a comparatively lower R, indicating better charge transfer kinetics. The combined result exhibits the synergistic impact of tellurium, silicon, and graphene in enhancing the energy storage capacity of future batteries across the industry.

摘要

便携式电子设备和电动汽车使用锂离子电池,但锂合金结块会限制其使用寿命。由于碲具有很强的电子导电性、体积容量和高能量密度,研究人员正在开展利用碲制造高性能电池的电化学金属电池研究。从理论上讲,锂碲电池的能量密度可比锂离子电池提高三倍。然而,金属碲面临着诸如倍率性能低、氧化还原反应不明确、中间产物溶解以及电极体积变化等挑战。本研究通过将碲、硅和石墨烯制成新型阳极涂层电极膜,探索提高下一代电池的储能容量。通过X射线衍射(XRD)、透射电子显微镜(TEM)热重分析(TGA)、差示扫描量热法(DSC)、扫描电子显微镜(SEM)、紫外可见光谱(UV)和X射线光电子能谱(XPS)分析对复合材料进行物理、热学和形态学分析,通过晶体结构排列和热稳定性揭示其刚性和耐久性。在不同扫描速率下的电化学分析(循环伏安法,CV)中,在不同扫描速度(25、50和100 mV/s)下表现出一致且高比容量(Cp)值的样品表明其具有优异的存储和保持电荷的能力。随着扫描速率增加Cp值降低表明循环速度限制了电荷转移动力学和电极性能。在电化学阻抗谱(EIS)中,纯碲、碲+石墨烯、碲+硅+石墨烯和碲+硅样品的电荷转移电阻(R)分别为759.07Ω、4.21Ω、36.39Ω和164.90Ω。碲+石墨烯样品的R最低,表明在电极接触处电荷转移效率最佳,而碲+硅+石墨烯样品的R相对较低,表明电荷转移动力学较好。综合结果显示了碲、硅和石墨烯在提高整个行业未来电池储能容量方面的协同作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc7e/11530791/c4d6d77cc82d/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验