Suppr超能文献

来自皱叶鳞毛蕨的植物合成银纳米颗粒对金黄色葡萄球菌ATCC 28923和大肠杆菌ATCC 28922的抗菌活性

Antibacterial Activity of Phyto-Synthesized Silver Nanoparticles From Dryopteris cristata Against Staphylococcus aureus ATCC 28923 and Escherichia coli ATCC 28922.

作者信息

Bello Emmanuel T, Awe Sunday, Bale Muritala I, Awosika Ayoola, Oladejo Janet M, Olaitan Faith J, Ikibe Jedidiah E

机构信息

Department of Science Laboratory Technology (Microbiology Unit), Newland Polytechnic, Ilorin, NGA.

Department of Microbiology, Kwara State University, Ilorin, NGA.

出版信息

Cureus. 2024 Oct 4;16(10):e70856. doi: 10.7759/cureus.70856. eCollection 2024 Oct.

Abstract

Introduction Nanotechnology has emerged as a vital field, particularly in synthesizing nanoparticles. Silver nanoparticles (AgNPs) are recognized for their strong antimicrobial properties against various pathogens, including  and , due to their small size and high surface area. Green synthesis using plant extracts offers an eco-friendly alternative. The rise of multidrug-resistant bacteria underscores the urgent need for new antimicrobial agents. This study investigates the antibacterial activities of AgNPs (DC-AgNPs) against  and , employing antimicrobial susceptibility testing (AST), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assessments, along with nanoparticle characterization. Materials and method The antimicrobial activity ofDC-AgNPs was evaluated using clinical isolates of  and . Bacterial inoculums were standardized to 0.5 MacFarlard (1.5 × 10 CFU/mL) and tested via a modified agar-well diffusion method. The MIC and MBC were determined using broth microdilution and sub-culturing methods, respectively. Characterization of the nanoparticles was conducted using Ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Results and conclusion  was identified as the plant used to synthesize AgNPs, confirmed by the University of Ilorin, Nigeria. Phytochemical screening revealed the presence of tannins, flavonoids, glycosides, and phenolics. The AgNPs were synthesized by adding the aqueous extract to silver nitrate, resulting in a color change. Characterization via UV-Vis spectrophotometry confirmed nanoparticle formation. Antimicrobial testing showed that DC-AgNPs effectively inhibited  and , with minimum inhibitory concentrations of 125 μg and 250 μg, respectively, indicating their potential as antimicrobial agents.

摘要

引言 纳米技术已成为一个重要领域,尤其是在合成纳米颗粒方面。银纳米颗粒(AgNPs)因其尺寸小和表面积大,对包括[具体病原体1]和[具体病原体2]在内的各种病原体具有强大的抗菌性能而受到认可。使用植物提取物进行绿色合成提供了一种环保的替代方法。多重耐药细菌的出现凸显了对新型抗菌剂的迫切需求。本研究采用抗菌药敏试验(AST)、最低抑菌浓度(MIC)和最低杀菌浓度(MBC)评估以及纳米颗粒表征,研究了[具体名称]银纳米颗粒(DC - AgNPs)对[具体病原体1]和[具体病原体2]的抗菌活性。

材料与方法 使用[具体病原体1]和[具体病原体2]的临床分离株评估DC - AgNPs的抗菌活性。将细菌接种物标准化至0.5麦氏单位(1.5×10[具体单位]CFU/mL),并通过改良的琼脂孔扩散法进行测试。分别使用肉汤微量稀释法和亚培养法测定MIC和MBC。使用紫外可见(UV - Vis)光谱、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)对纳米颗粒进行表征。

结果与结论 尼日利亚伊洛林大学确认[具体植物名称]为用于合成AgNPs的植物。植物化学筛选显示存在单宁、黄酮类化合物、糖苷和酚类物质。通过将水提取物加入硝酸银中合成了AgNPs,导致颜色变化。通过紫外可见分光光度法表征证实了纳米颗粒的形成。抗菌测试表明,DC - AgNPs有效抑制了[具体病原体1]和[具体病原体2],最低抑菌浓度分别为125μg和250μg,表明它们作为抗菌剂的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c065/11531801/7a1a8384c820/cureus-0016-00000070856-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验