Suppr超能文献

基于深度特征和手工特征集成的脑肿瘤分类新方法。

A Novel Approach for Brain Tumor Classification Using an Ensemble of Deep and Hand-Crafted Features.

机构信息

Department of Computer Sciences, University of Engineering and Technology, Taxila 47050, Pakistan.

Department of Computer Sciences, University of Chakwal, Chakwal 48800, Pakistan.

出版信息

Sensors (Basel). 2023 May 12;23(10):4693. doi: 10.3390/s23104693.

Abstract

One of the most severe types of cancer caused by the uncontrollable proliferation of brain cells inside the skull is brain tumors. Hence, a fast and accurate tumor detection method is critical for the patient's health. Many automated artificial intelligence (AI) methods have recently been developed to diagnose tumors. These approaches, however, result in poor performance; hence, there is a need for an efficient technique to perform precise diagnoses. This paper suggests a novel approach for brain tumor detection via an ensemble of deep and hand-crafted feature vectors (FV). The novel FV is an ensemble of hand-crafted features based on the GLCM (gray level co-occurrence matrix) and in-depth features based on VGG16. The novel FV contains robust features compared to independent vectors, which improve the suggested method's discriminating capabilities. The proposed FV is then classified using SVM or support vector machines and the k-nearest neighbor classifier (KNN). The framework achieved the highest accuracy of 99% on the ensemble FV. The results indicate the reliability and efficacy of the proposed methodology; hence, radiologists can use it to detect brain tumors through MRI (magnetic resonance imaging). The results show the robustness of the proposed method and can be deployed in the real environment to detect brain tumors from MRI images accurately. In addition, the performance of our model was validated via cross-tabulated data.

摘要

颅内细胞不受控制地增殖而导致的最严重的癌症之一是脑肿瘤。因此,快速准确的肿瘤检测方法对患者的健康至关重要。最近已经开发出许多自动化的人工智能 (AI) 方法来诊断肿瘤。然而,这些方法的性能较差;因此,需要一种有效的技术来进行精确诊断。本文提出了一种通过深度和手工特征向量 (FV) 的集成来检测脑肿瘤的新方法。新的 FV 是基于 GLCM(灰度共生矩阵)的手工特征和基于 VGG16 的深度特征的集成。与独立向量相比,新的 FV 包含更强大的特征,这提高了所提出方法的区分能力。然后使用 SVM 或支持向量机和 KNN(k-最近邻分类器)对新的 FV 进行分类。该框架在集成 FV 上实现了高达 99%的最高精度。结果表明了所提出方法的可靠性和有效性;因此,放射科医生可以使用它通过 MRI(磁共振成像)来检测脑肿瘤。结果表明了所提出方法的稳健性,并且可以在实际环境中部署,以从 MRI 图像中准确地检测脑肿瘤。此外,我们的模型性能通过交叉制表数据进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e7e/10221077/b97d2705eaa9/sensors-23-04693-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验