文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications.

作者信息

Harun-Ur-Rashid Mohammad, Jahan Israt, Foyez Tahmina, Imran Abu Bin

机构信息

Department of Chemistry, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh.

Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan.

出版信息

Micromachines (Basel). 2023 Sep 18;14(9):1786. doi: 10.3390/mi14091786.


DOI:10.3390/mi14091786
PMID:37763949
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10536921/
Abstract

Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices represent a significant development in biomedical applications. Nanomaterials, engineered to imitate biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility, multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the development and distinctive attributes of various BINMs, including those originating from proteins, DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores biomimicry's structure-function correlations. Synthesis mosaics include bioprocesses, biomolecules, and natural structures. These nanomaterials' interfaces use biomimetic functionalization and geometric adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth analysis of the existing challenges and proposes prospective strategies to improve the efficiency, performance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint highlighting potential avenues for future exploration and advancement. The objective is to effectively utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices, thereby propelling this rapidly developing field toward its promising future.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/3f39490c0899/micromachines-14-01786-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/eefd7ea2ae47/micromachines-14-01786-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/66b8ca57210f/micromachines-14-01786-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/48d50159e8c1/micromachines-14-01786-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/0a5d4b08b75c/micromachines-14-01786-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/0360b668418b/micromachines-14-01786-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/eab887ef81c1/micromachines-14-01786-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/14e8ef29ee46/micromachines-14-01786-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/7dfd228d1ae3/micromachines-14-01786-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/69f7dbaecde6/micromachines-14-01786-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/ae5b5a570ee9/micromachines-14-01786-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/cdd184b04cc7/micromachines-14-01786-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/e6da3b6cf9d8/micromachines-14-01786-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/f6d1fc5ccf2c/micromachines-14-01786-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/03c03c97576d/micromachines-14-01786-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/33c80f3f98c3/micromachines-14-01786-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/ebbfdc3d1d09/micromachines-14-01786-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/fe9349352e91/micromachines-14-01786-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/cb0e797af13e/micromachines-14-01786-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/55d4e33e64f2/micromachines-14-01786-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/3931eec10c21/micromachines-14-01786-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/290606f7c3b3/micromachines-14-01786-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/8589269d4a08/micromachines-14-01786-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/4e3083dcb481/micromachines-14-01786-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/c750dca7f3e4/micromachines-14-01786-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/3f39490c0899/micromachines-14-01786-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/eefd7ea2ae47/micromachines-14-01786-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/66b8ca57210f/micromachines-14-01786-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/48d50159e8c1/micromachines-14-01786-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/0a5d4b08b75c/micromachines-14-01786-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/0360b668418b/micromachines-14-01786-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/eab887ef81c1/micromachines-14-01786-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/14e8ef29ee46/micromachines-14-01786-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/7dfd228d1ae3/micromachines-14-01786-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/69f7dbaecde6/micromachines-14-01786-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/ae5b5a570ee9/micromachines-14-01786-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/cdd184b04cc7/micromachines-14-01786-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/e6da3b6cf9d8/micromachines-14-01786-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/f6d1fc5ccf2c/micromachines-14-01786-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/03c03c97576d/micromachines-14-01786-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/33c80f3f98c3/micromachines-14-01786-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/ebbfdc3d1d09/micromachines-14-01786-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/fe9349352e91/micromachines-14-01786-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/cb0e797af13e/micromachines-14-01786-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/55d4e33e64f2/micromachines-14-01786-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/3931eec10c21/micromachines-14-01786-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/290606f7c3b3/micromachines-14-01786-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/8589269d4a08/micromachines-14-01786-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/4e3083dcb481/micromachines-14-01786-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/c750dca7f3e4/micromachines-14-01786-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/10536921/3f39490c0899/micromachines-14-01786-g025.jpg

相似文献

[1]
Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications.

Micromachines (Basel). 2023-9-18

[2]
Design and synthesis of bioinspired nanomaterials for biomedical application.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024

[3]
Nanotechnology: an evidence-based analysis.

Ont Health Technol Assess Ser. 2006

[4]
Strategies in design of self-propelling hybrid micro/nanobots for bioengineering applications.

Biomed Mater. 2023-10-3

[5]
DNA Nanodevices: From Mechanical Motions to Biomedical Applications.

Curr Top Med Chem. 2022

[6]
Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field.

Materials (Basel). 2022-11-4

[7]
Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives.

Nano Converg. 2016

[8]
.

Biotechnol Rep (Amst). 2024-5-24

[9]
Peptide-Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications.

Small. 2021-2

[10]
Bio-inspired graphene-based nano-systems for biomedical applications.

Nanotechnology. 2021-9-21

引用本文的文献

[1]
Biomimetic nanovaccines in cancer therapy: mechanisms, efficacy, and clinical translation.

Mater Today Bio. 2025-7-18

[2]
Nanofabrication Techniques for Enhancing Plant-Microbe Interactions in Sustainable Agriculture.

Nanomaterials (Basel). 2025-7-14

[3]
Mushroom Bioactive Molecules as Anticancerous Agents: An Overview.

Food Sci Nutr. 2025-7-14

[4]
Biotechnological Applications of Biogenic Nanomaterials from Red Seaweed: A Systematic Review (2014-2024).

Int J Mol Sci. 2025-4-30

[5]
Facile Synthesis of Bioactive Silver Nanocomposite Hydrogels with Electro-Conductive and Wound-Healing Properties.

Gels. 2025-1-22

[6]
Nanotherapeutic and Nano-Bio Interface for Regeneration and Healing.

Biomedicines. 2024-12-23

[7]
Unlocking the potential of titanium dioxide nanoparticles: an insight into green synthesis, optimizations, characterizations, and multifunctional applications.

Microb Cell Fact. 2024-12-23

[8]
Utilizing machine learning and molecular dynamics for enhanced drug delivery in nanoparticle systems.

Sci Rep. 2024-11-4

[9]
Recent Updates on Diverse Nanoparticles and Nanostructures in Therapeutic and Diagnostic Applications with Special Focus on Smart Protein Nanoparticles: A Review.

ACS Omega. 2024-10-10

[10]
Editorial for the Special Issue on Nanomaterials for Micro/Nanodevices.

Micromachines (Basel). 2024-10-10

本文引用的文献

[1]
Dendrimer and dendrimer gel-derived drug delivery systems: Breaking bottlenecks of topical administration of glaucoma medications.

MedComm Biomater Appl. 2023-3

[2]
Bio-inspired optical structures for enhancing luminescence.

Exploration (Beijing). 2023-4-11

[3]
Fabrication and Validation of a 3D Portable PEGDA Microfluidic Chip for Visual Colorimetric Detection of Captured Breast Cancer Cells.

Polymers (Basel). 2023-7-27

[4]
Chitosan-Based Composites: Development and Perspective in Food Preservation and Biomedical Applications.

Polymers (Basel). 2023-7-25

[5]
Biomimetic Flexible Sensors and Their Applications in Human Health Detection.

Biomimetics (Basel). 2023-7-6

[6]
Novel Highly Efficient Antibacterial Chitosan-Based Films.

BioTech (Basel). 2023-7-7

[7]
A novel cross-communication of HIF-1α and HIF-2α with Wnt signaling in TNBC and influence of hypoxic microenvironment in the formation of an organ-on-chip model of breast cancer.

Med Oncol. 2023-7-15

[8]
Chitosan-Based Antibacterial Films for Biomedical and Food Applications.

Int J Mol Sci. 2023-6-27

[9]
Design and synthesis of bioinspired nanomaterials for biomedical application.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024

[10]
"Bioinspired" Membrane-Coated Nanosystems in Cancer Theranostics: A Comprehensive Review.

Pharmaceutics. 2023-6-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索