Harun-Ur-Rashid Mohammad, Jahan Israt, Foyez Tahmina, Imran Abu Bin
Department of Chemistry, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh.
Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan.
Micromachines (Basel). 2023 Sep 18;14(9):1786. doi: 10.3390/mi14091786.
Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices represent a significant development in biomedical applications. Nanomaterials, engineered to imitate biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility, multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the development and distinctive attributes of various BINMs, including those originating from proteins, DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores biomimicry's structure-function correlations. Synthesis mosaics include bioprocesses, biomolecules, and natural structures. These nanomaterials' interfaces use biomimetic functionalization and geometric adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth analysis of the existing challenges and proposes prospective strategies to improve the efficiency, performance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint highlighting potential avenues for future exploration and advancement. The objective is to effectively utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices, thereby propelling this rapidly developing field toward its promising future.
探索受生物启发的纳米材料(BINMs)并将其整合到微纳器件中是生物医学应用领域的一项重大进展。经过设计以模仿生物结构和过程的纳米材料具有独特的属性,如卓越的生物相容性、多功能性和无与伦比的通用性。BINMs在生物医学微纳器件的各个领域都展现出巨大潜力,包括生物传感器、靶向给药系统和先进的组织工程构建体。本文全面研究了各种BINMs的发展及其独特属性,包括源自蛋白质、DNA和仿生聚合物的材料。重点关注将这些材料整合到微纳器件中以及随之产生的生物医学影响。本综述探讨了仿生学中的结构 - 功能关系。合成要素包括生物过程、生物分子和自然结构。这些纳米材料的界面采用仿生功能化和几何适配,可改变药物递送、纳米生物传感、生物启发的芯片器官系统、芯片癌症模型、伤口愈合敷料垫和抗菌表面。它深入分析了现存的挑战,并提出了提高这些器件效率、性能和可靠性的前瞻性策略。此外,本研究提供了前瞻性观点,突出了未来探索和进步的潜在途径。目的是在生物医学微纳器件的发展中有效利用并最大化BINMs的应用,从而推动这个快速发展的领域迈向充满希望的未来。