Suppr超能文献

评估玉米叶片中的作物氮素状况:一种利用叶绿素荧光参数的预测建模方法。

Evaluating crop nitrogen status in maize leaves: A predictive modelling approach using chlorophyll fluorescence parameters.

作者信息

Meng Xiangzeng, Zhang Shan, Wang Lichun, Yu Yang, Duan Sijia, Zhang Yixiang, Lv Yanjie, Wang Yongjun

机构信息

Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai St, Changchun, 130033, Jilin, PR China.

College of Agronomy, Jilin Agricultural University, 2888 Xincheng St, Changchun, 130118, Jilin, PR China.

出版信息

Heliyon. 2024 Oct 18;10(20):e39601. doi: 10.1016/j.heliyon.2024.e39601. eCollection 2024 Oct 30.

Abstract

The consumption of chemical fertilizers has increased eight-fold since the 19th century, outstripping crop yields increases and, emphasizing the need for precise nitrogen (N) assessment in crops to optimize fertilization and mitigate environmental impacts. This study developed a model using chlorophyll fluorescence technology to accurately evaluate the N status in maize leaves while addressing the limitations of current labor-intensive and environmentally sensitive methods. Based on a long-term experiment initiated in 2011, maize hybrid Fumin 985 was sampled in 2021 and 2022 under two crop-straw management strategies (SM: no tillage with surface straw mulch, SP: plough tillage with straw incorporation) and six N application rates. Partial least squares regression (PLSR) models were formulated using chlorophyll fluorescence parameters (ChlF) to assess leaf N content (N leaf). The results indicated that a N application rate of 270 kg ha sufficed to meet crop N requirements. Leaf characteristics such as N leaf, total pigment content (TP), and leaf dry weight (DW leaf) changed significantly with increasing N application rates, influencing rapid chlorophyll fluorescence (OJIP) dynamics. Principal component analysis (PCA) reduced ChlF from 35 to 21, and four models were developed, among which, the model using ChlF and TP was more accurate than the model using DW alone. Key ChlF parameters for PLSR model performance included ABS/RC, φ(Eo), ETo/CSm, and δ(Ro)/(1-δ(Ro)). Although non-destructive N leaf detection using chlorophyll fluorescence technology proved feasible, additional leaf characteristics, such as TP, are necessary to improve model accuracy. Considering local field conditions is essential for the application of this technology at a larger scale. Precise evaluation of N status using chlorophyll fluorescence is beneficial for a more efficient N management and sustainable agriculture.

摘要

自19世纪以来,化肥消费量增长了八倍,超过了作物产量的增长,这凸显了精确评估作物氮素状况以优化施肥并减轻环境影响的必要性。本研究开发了一种利用叶绿素荧光技术的模型,以准确评估玉米叶片中的氮素状况,同时解决当前劳动密集型和环境敏感型方法的局限性。基于2011年开始的一项长期试验,2021年和2022年在两种作物秸秆管理策略(SM:免耕并覆盖地表秸秆,SP:翻耕并将秸秆混入土壤)和六种施氮量条件下对玉米杂交种富敏985进行了采样。利用叶绿素荧光参数(ChlF)建立偏最小二乘回归(PLSR)模型来评估叶片氮含量(Nleaf)。结果表明,270 kg/ha的施氮量足以满足作物对氮的需求。随着施氮量增加,Nleaf、总色素含量(TP)和叶片干重(DWleaf)等叶片特征发生显著变化,影响了快速叶绿素荧光(OJIP)动力学。主成分分析(PCA)将ChlF从35个减少到21个,并建立了四个模型,其中使用ChlF和TP的模型比仅使用DW的模型更准确。PLSR模型性能的关键ChlF参数包括ABS/RC、φ(Eo)、ETo/CSm和δ(Ro)/(1-δ(Ro))。尽管利用叶绿素荧光技术进行无损Nleaf检测被证明是可行的,但还需要诸如TP等其他叶片特征来提高模型准确性。考虑当地田间条件对于该技术的大规模应用至关重要。利用叶绿素荧光精确评估氮素状况有利于更高效的氮管理和可持续农业。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc83/11532872/f6d70a4a7bb7/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验