Petry Romana, de Almeida James M, Côa Francine, Crasto de Lima Felipe, Martinez Diego Stéfani T, Fazzio Adalberto
Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.
Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.
Beilstein J Nanotechnol. 2024 Oct 30;15:1297-1311. doi: 10.3762/bjnano.15.105. eCollection 2024.
Graphene oxide (GO) undergoes multiple transformations when introduced to biological and environmental media. GO surface favors the adsorption of biomolecules through different types of interaction mechanisms, modulating the biological effects of the material. In this study, we investigated the interaction of GO with tannic acid (TA) and its consequences for GO toxicity. We focused on understanding how TA interacts with GO, its impact on the material surface chemistry, colloidal stability, as well as, toxicity and biodistribution using the model. Employing computational modeling, including reactive classical molecular dynamics and ab initio calculations, we reveal that TA preferentially binds to the most reactive sites on GO surfaces via the oxygen-containing groups or the carbon matrix; van der Waals interaction forces dominate the binding energy. TA exhibits a dose-dependent mitigating effect on the toxicity of GO, which can be attributed not only to the surface interactions between the molecule and the material but also to the inherent biological properties of TA in . Our findings contribute to a deeper understanding of GO's environmental behavior and toxicity and highlight the potential of tannic acid for the synthesis and surface functionalization of graphene-based nanomaterials, offering insights into safer nanotechnology development.
氧化石墨烯(GO)在引入生物和环境介质时会经历多种转变。GO表面通过不同类型的相互作用机制有利于生物分子的吸附,从而调节材料的生物学效应。在本研究中,我们研究了GO与单宁酸(TA)的相互作用及其对GO毒性的影响。我们着重了解TA如何与GO相互作用,其对材料表面化学、胶体稳定性以及使用该模型的毒性和生物分布的影响。通过采用包括反应性经典分子动力学和从头算计算在内的计算模型,我们发现TA优先通过含氧基团或碳基质与GO表面上最具反应性的位点结合;范德华相互作用力主导结合能。TA对GO的毒性表现出剂量依赖性的减轻作用,这不仅可归因于分子与材料之间的表面相互作用,还可归因于TA在……中的固有生物学特性。我们的研究结果有助于更深入地了解GO的环境行为和毒性,并突出了单宁酸在基于石墨烯的纳米材料合成和表面功能化方面的潜力,为更安全的纳米技术发展提供了见解。