文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过利用β-折叠的机械势能并结合网络导向组装来构建受蜘蛛丝启发的聚合网络。

Spider-silk inspired polymeric networks by harnessing the mechanical potential of β-sheets through network guided assembly.

机构信息

Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.

Department of Biomedical Engineering, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.

出版信息

Nat Commun. 2020 Apr 2;11(1):1630. doi: 10.1038/s41467-020-15312-x.


DOI:10.1038/s41467-020-15312-x
PMID:32242004
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7118121/
Abstract

The high toughness of natural spider-silk is attributed to their unique β-sheet secondary structures. However, the preparation of mechanically strong β-sheet rich materials remains a significant challenge due to challenges involved in processing the polymers/proteins, and managing the assembly of the hydrophobic residues. Inspired by spider-silk, our approach effectively utilizes the superior mechanical toughness and stability afforded by localised β-sheet domains within an amorphous network. Using a grafting-from polymerisation approach within an amorphous hydrophilic network allows for spatially controlled growth of poly(valine) and poly(valine-r-glycine) as β-sheet forming polypeptides via N-carboxyanhydride ring opening polymerisation. The resulting continuous β-sheet nanocrystal network exhibits improved compressive strength and stiffness over the initial network lacking β-sheets of up to 30 MPa (300 times greater than the initial network) and 6 MPa (100 times greater than the initial network) respectively. The network demonstrates improved resistance to strong acid, base and protein denaturants over 28 days.

摘要

天然蛛丝的高韧性归因于其独特的β-折叠二级结构。然而,由于加工聚合物/蛋白质以及管理疏水性残基组装所涉及的挑战,制备具有机械强度的富含β-折叠的材料仍然是一个重大挑战。受蛛丝的启发,我们的方法有效地利用了局部β-折叠结构域在无定形网络中提供的卓越机械韧性和稳定性。在无定形亲水性网络中使用从接枝聚合方法,可以通过 N-羧酸酐开环聚合来控制空间生长聚(缬氨酸)和聚(缬氨酸-r-甘氨酸)作为形成β-折叠的多肽。所得连续β-折叠纳米晶体网络在抗压强度和刚度方面均优于初始无β-折叠网络,分别提高了 30MPa(比初始网络高 300 倍)和 6MPa(比初始网络高 100 倍)。该网络在 28 天内对强酸、强碱和蛋白质变性剂的抵抗力有所提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/79abe652cf0b/41467_2020_15312_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/75da238b48f7/41467_2020_15312_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/b66076c4e06a/41467_2020_15312_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/fba0750c4ecd/41467_2020_15312_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/06a30dbd111a/41467_2020_15312_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/f586eedac072/41467_2020_15312_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/ae8ed4b8b3a4/41467_2020_15312_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/c9af270e7c04/41467_2020_15312_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/02340f09e69a/41467_2020_15312_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/79abe652cf0b/41467_2020_15312_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/75da238b48f7/41467_2020_15312_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/b66076c4e06a/41467_2020_15312_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/fba0750c4ecd/41467_2020_15312_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/06a30dbd111a/41467_2020_15312_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/f586eedac072/41467_2020_15312_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/ae8ed4b8b3a4/41467_2020_15312_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/c9af270e7c04/41467_2020_15312_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/02340f09e69a/41467_2020_15312_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8b/7118121/79abe652cf0b/41467_2020_15312_Fig9_HTML.jpg

相似文献

[1]
Spider-silk inspired polymeric networks by harnessing the mechanical potential of β-sheets through network guided assembly.

Nat Commun. 2020-4-2

[2]
Highly Tough, Stretchable, and Enzymatically Degradable Hydrogels Modulated by Bioinspired Hydrophobic β-Sheet Peptides.

Biomacromolecules. 2021-11-8

[3]
Sequence-structure correlations in silk: Poly-Ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale.

J Mech Behav Biomed Mater. 2011-7-26

[4]
Conformation and dynamics of soluble repetitive domain elucidates the initial β-sheet formation of spider silk.

Nat Commun. 2018-5-29

[5]
Self-assembled semi-crystallinity at parallel β-sheet nanocrystal interfaces in clustered MaSp1 (spider silk) proteins.

Mater Sci Eng C Mater Biol Appl. 2015-8-29

[6]
Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils.

Nano Lett. 2010-7-14

[7]
Self-assembly of genetically engineered spider silk block copolymers.

Biomacromolecules. 2009-2-9

[8]
Strategy to Fabricate a Strong and Supertough Bio-Inspired Fiber with Organic-Inorganic Networks in a Green and Scalable Way.

ACS Nano. 2021-10-26

[9]
Mechanically inferior constituents in spider silk result in mechanically superior fibres by adaptation to harsh hydration conditions: a molecular dynamics study.

J R Soc Interface. 2018-7

[10]
Effects of β-sheet crystals and a glycine-rich matrix on the thermal conductivity of spider dragline silk.

Int J Biol Macromol. 2017-3

引用本文的文献

[1]
Crosslinking, salt-induced aging, and secondary structure formation in Peptide-containing coacervates inspired by spider silk.

Commun Chem. 2025-8-28

[2]
Robust -Sheet Peptide Reinforced Polymer Fibers.

Small Sci. 2025-5-26

[3]
Amphibian Egg Jelly as a Biocompatible Material: Physicochemical Characterization and Selective Cytotoxicity Against Melanoma Cells.

Polymers (Basel). 2025-7-27

[4]
An engineered self-cleavage fusion system for the production of chimaera spider silk proteins.

BMC Biotechnol. 2025-7-1

[5]
Peptide stereocomplex cross-links for polymer hydrogels.

Chem Sci. 2025-6-2

[6]
High-yield spidroin mimics for bioinspired fibers via computational design.

Front Bioeng Biotechnol. 2025-4-24

[7]
Tough Hydrogels with Different Toughening Mechanisms and Applications.

Int J Mol Sci. 2024-2-26

[8]
Superfast Gelation of Spider Silk-Based Artificial Silk Protein.

Gels. 2024-1-17

[9]
Tuning the viscoelastic properties of peptide coacervates by single amino acid mutations and salt kosmotropicity.

Commun Chem. 2024-1-4

[10]
Protection and Restoration of Damaged Hair via a Polyphenol Complex by Promoting Mechanical Strength, Antistatic, and Ultraviolet Protection Properties.

Biomimetics (Basel). 2023-7-9

本文引用的文献

[1]
Degradable 3D-Printed Hydrogels Based on Star-Shaped Copolypeptides.

Biomacromolecules. 2018-4-24

[2]
Polymorphic regenerated silk fibers assembled through bioinspired spinning.

Nat Commun. 2017-11-9

[3]
Self-Assembling RADA16-I Peptide Hydrogel Scaffold Loaded with Tamoxifen for Breast Reconstruction.

Biomed Res Int. 2017

[4]
Self-Healing, Self-Assembled β-Sheet Peptide-Poly(γ-glutamic acid) Hybrid Hydrogels.

J Am Chem Soc. 2017-5-19

[5]
Macroporous Hydrogels Composed Entirely of Synthetic Polypeptides: Biocompatible and Enzyme Biodegradable 3D Cellular Scaffolds.

Biomacromolecules. 2016-8-8

[6]
Structure-mechanical property correlations of hydrogel forming β-sheet peptides.

Chem Soc Rev. 2016-8-22

[7]
Poly(alanine): Structure and Stability of the D and L-Enantiomers.

Biomacromolecules. 2016-1-11

[8]
Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein.

Nat Commun. 2015-5-20

[9]
Beta-Sheet-Forming, Self-Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications.

Small. 2015-4-30

[10]
Toward spinning artificial spider silk.

Nat Chem Biol. 2015-4-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索