Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA.
Mol Microbiol. 2022 Jun;117(6):1384-1404. doi: 10.1111/mmi.14915. Epub 2022 May 24.
Bacterial opportunistic pathogens make diverse secondary metabolites both in the natural environment and when causing infections, yet how these molecules mediate microbial interactions and their consequences for antibiotic treatment are still poorly understood. Here, we explore the role of three redox-active secondary metabolites, pyocyanin, phenazine-1-carboxylic acid, and toxoflavin, as interspecies modulators of antibiotic resilience. We find that these molecules dramatically change susceptibility levels of diverse bacteria to clinical antibiotics. Pyocyanin and phenazine-1-carboxylic acid are made by Pseudomonas aeruginosa, while toxoflavin is made by Burkholderia gladioli, organisms that infect cystic fibrosis and other immunocompromised patients. All molecules alter the susceptibility profile of pathogenic species within the "Burkholderia cepacia complex" to different antibiotics, either antagonizing or potentiating their effects, depending on the drug's class. Defense responses regulated by the redox-sensitive transcription factor SoxR potentiate the antagonistic effects these metabolites have against fluoroquinolones, and the presence of genes encoding SoxR and the efflux systems it regulates can be used to predict how these metabolites will affect antibiotic susceptibility of different bacteria. Finally, we demonstrate that inclusion of secondary metabolites in standard protocols used to assess antibiotic resistance can dramatically alter the results, motivating the development of new tests for more accurate clinical assessment.
细菌机会性病原体在自然环境中和引起感染时会产生多种次生代谢物,但这些分子如何介导微生物相互作用及其对抗生素治疗的影响仍知之甚少。在这里,我们探索了三种氧化还原活性次生代谢物(绿脓菌素、吩嗪-1-羧酸和毒黄素)作为种间抗生素耐药性调节剂的作用。我们发现这些分子显著改变了不同细菌对临床抗生素的敏感性水平。绿脓菌素和吩嗪-1-羧酸由铜绿假单胞菌产生,而毒黄素由伯克霍尔德菌产生,这些生物体感染囊性纤维化和其他免疫功能低下的患者。所有这些分子都改变了“伯克霍尔德菌属复合群”中致病性物种对不同抗生素的敏感性特征,根据药物类别,这些分子的作用可以是拮抗作用或增强作用。由氧化还原敏感转录因子 SoxR 调节的防御反应增强了这些代谢物对氟喹诺酮类药物的拮抗作用,编码 SoxR 和它调节的外排系统的基因的存在可以用来预测这些代谢物将如何影响不同细菌对抗生素的敏感性。最后,我们证明在评估抗生素耐药性的标准方案中包含次生代谢物会极大地改变结果,这促使我们开发了新的测试方法以进行更准确的临床评估。