Li Mingyuan, Jia Tong, Wang Hao, Ma Bowen, Lu Hui, Lin Shuyang, Cai Da, Chen Dongyue
IEEE Trans Neural Netw Learn Syst. 2025 Jul;36(7):12076-12090. doi: 10.1109/TNNLS.2024.3487833.
Prohibited item detection in X-ray images is one of the most essential and highly effective methods widely employed in various security inspection scenarios. Considering the significant overlapping phenomenon in X-ray prohibited item images, we propose an anti-overlapping detection transformer (AO-DETR) based on one of the state-of-the-art (SOTA) general object detectors, DETR with improved denoising anchor boxes (DINO). Specifically, to address the feature coupling issue caused by overlapping phenomena, we introduce the category-specific one-to-one assignment (CSA) strategy to constrain category-specific object queries in predicting prohibited items of fixed categories, which can enhance their ability to extract features specific to prohibited items of a particular category from the overlapping foreground-background features. To address the edge blurring problem caused by overlapping phenomena, we propose the look forward densely (LFD) scheme, which improves the localization accuracy of reference boxes in mid-to-high-level decoder layers and enhances the ability to locate blurry edges of the final layer. Similar to DINO, our AO-DETR provides two different versions with distinct backbones, tailored to meet diverse application requirements. Extensive experiments on the PIXray, OPIXray, and HIXray datasets demonstrate that the proposed method surpasses the SOTA object detectors, indicating its potential applications in the field of prohibited item detection. The source code will be available at: https://github.com/Limingyuan001/AO-DETR.
X射线图像中的违禁物品检测是各种安全检查场景中广泛采用的最重要且高效的方法之一。考虑到X射线违禁物品图像中存在显著的重叠现象,我们基于一种先进的(SOTA)通用目标检测器——带有改进去噪锚框的DETR(DINO),提出了一种抗重叠检测变压器(AO-DETR)。具体而言,为了解决由重叠现象引起的特征耦合问题,我们引入了类别特定的一对一分配(CSA)策略,以在预测固定类别的违禁物品时约束类别特定的目标查询,这可以增强其从重叠的前景-背景特征中提取特定类别违禁物品特征的能力。为了解决由重叠现象引起的边缘模糊问题,我们提出了向前密集注视(LFD)方案,该方案提高了中高级解码器层中参考框的定位精度,并增强了定位最终层模糊边缘的能力。与DINO类似,我们的AO-DETR提供了两个具有不同主干的不同版本,以满足不同的应用需求。在PIXray、OPIXray和HIXray数据集上进行的大量实验表明,所提出的方法超越了SOTA目标检测器,表明其在违禁物品检测领域的潜在应用。源代码将在以下网址提供:https://github.com/Limingyuan001/AO-DETR。