Wang Chunxiang, Wang Tianlu, Li Mingtong, Zhang Rongjing, Ugurlu Halim, Sitti Metin
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland.
Sci Adv. 2024 Nov 8;10(45):eadq1951. doi: 10.1126/sciadv.adq1951. Epub 2024 Nov 6.
Miniature soft robots offer opportunities for safe and physically adaptive medical interventions in hard-to-reach regions. Deploying multiple robots could further enhance the efficacy and multifunctionality of these operations. However, multirobot deployment in physiologically relevant three-dimensional (3D) tubular structures is limited by the lack of effective mechanisms for independent control of miniature magnetic soft robots. This work presents a framework leveraging the shape-adaptive robotic design and heterogeneous resistance from robot-lumen interactions to enable magnetic multirobot control. We first compute influence and actuation regions to quantify robot movement. Subsequently, a path planning algorithm generates the trajectory of a permanent magnet for multirobot navigation in 3D lumens. Last, robots are controlled individually in multilayer lumen networks under medical imaging. Demonstrations of multilocation cargo delivery and flow diversion manifest their potential to enhance biomedical functions. This framework offers a solution to multirobot actuation benefiting applications across different miniature robotic devices in complex environments.
微型软机器人为在难以触及的区域进行安全且具有物理适应性的医疗干预提供了机会。部署多个机器人可以进一步提高这些操作的功效和多功能性。然而,在生理相关的三维(3D)管状结构中部署多机器人受到缺乏有效机制来独立控制微型磁性软机器人的限制。这项工作提出了一个框架,利用形状自适应机器人设计和机器人与管腔相互作用产生的异质阻力来实现磁性多机器人控制。我们首先计算影响区域和驱动区域以量化机器人的运动。随后,路径规划算法生成永久磁铁的轨迹,用于多机器人在3D管腔中的导航。最后,在医学成像下,机器人在多层管腔网络中进行单独控制。多点货物输送和分流的演示表明了它们增强生物医学功能的潜力。该框架为多机器人驱动提供了一种解决方案,有利于在复杂环境中跨不同微型机器人设备的应用。