Suppr超能文献

基于竞争性双阳离子传输的二维纳米流体忆阻器中的类突触可塑性

Synaptic-like plasticity in 2D nanofluidic memristor from competitive bicationic transport.

作者信息

Noh Yechan, Smolyanitsky Alex

机构信息

Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA.

Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305, USA.

出版信息

Sci Adv. 2024 Nov 8;10(45):eadr1531. doi: 10.1126/sciadv.adr1531. Epub 2024 Nov 6.

Abstract

Synaptic plasticity, the dynamic tuning of signal transmission strength between neurons, serves as a fundamental basis for memory and learning in biological organisms. This adaptive nature of synapses is considered one of the key features contributing to the superior energy efficiency of the brain. Here, we use molecular dynamics simulations to demonstrate synaptic-like plasticity in a subnanoporous two-dimensional membrane. We show that a train of voltage spikes dynamically modifies the membrane's ionic permeability in a process involving competitive bicationic transport. This process is shown to be repeatable after a given resting period. Because of a combination of subnanometer pore size and the atomic thinness of the membrane, this system exhibits energy dissipation of 0.1 to 100 aJ per voltage spike, which is several orders of magnitude lower than 0.1 to 10 fJ per spike in the human synapse. We reveal the underlying physical mechanisms at molecular detail and investigate the local energetics underlying this apparent synaptic-like behavior.

摘要

突触可塑性,即神经元之间信号传递强度的动态调节,是生物有机体记忆和学习的基本基础。突触的这种适应性特性被认为是大脑卓越能量效率的关键特征之一。在这里,我们使用分子动力学模拟来证明亚纳米多孔二维膜中的类突触可塑性。我们表明,一系列电压尖峰在一个涉及竞争性双阳离子运输的过程中动态地改变膜的离子渗透性。该过程在给定的静止期后被证明是可重复的。由于亚纳米孔径和膜的原子薄度的结合,该系统每个电压尖峰的能量耗散为0.1至100阿焦耳,比人类突触中每个尖峰0.1至10飞焦耳低几个数量级。我们在分子细节上揭示了潜在的物理机制,并研究了这种明显的类突触行为背后的局部能量学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/773d/11540034/c4d2f20579cd/sciadv.adr1531-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验