Chen Pengzuo, Zhang Nan, Wang Sibo, Zhou Tianpei, Tong Yun, Ao Chengcheng, Yan Wensheng, Zhang Lidong, Chu Wangsheng, Wu Changzheng, Xie Yi
Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, 230026 Anhui, People's Republic of China.
Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, 230026 Anhui, People's Republic of China.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6635-6640. doi: 10.1073/pnas.1817881116. Epub 2019 Mar 14.
Electrocatalytic N reduction reaction (NRR) into ammonia (NH), especially if driven by renewable energy, represents a potentially clean and sustainable strategy for replacing traditional Haber-Bosch process and dealing with climate change effect. However, electrocatalytic NRR process under ambient conditions often suffers from low Faradaic efficiency and high overpotential. Developing newly regulative methods for highly efficient NRR electrocatalysts is of great significance for NH synthesis. Here, we propose an interfacial engineering strategy for designing a class of strongly coupled hybrid materials as highly active electrocatalysts for catalytic N fixation. X-ray absorption near-edge spectroscopy (XANES) spectra confirm the successful construction of strong bridging bonds (Co-N/S-C) at the interface between CoS nanoparticles and NS-G (nitrogen- and sulfur-doped reduced graphene). These bridging bonds can accelerate the reaction kinetics by acting as an electron transport channel, enabling electrocatalytic NRR at a low overpotential. As expected, CoS/NS-G hybrids show superior NRR activity with a high NH Faradaic efficiency of 25.9% at -0.05 V versus reversible hydrogen electrode (RHE). Moreover, this strategy is general and can be extended to a series of other strongly coupled metal sulfide hybrids. This work provides an approach to design advanced materials for ammonia production.
电催化氮还原反应(NRR)生成氨(NH₃),特别是如果由可再生能源驱动,代表了一种潜在的清洁和可持续策略,用于替代传统的哈伯-博施法并应对气候变化影响。然而,环境条件下的电催化NRR过程常常存在法拉第效率低和过电位高的问题。开发用于高效NRR电催化剂的新调控方法对于氨合成具有重要意义。在此,我们提出一种界面工程策略,用于设计一类强耦合杂化材料作为催化氮固定的高活性电催化剂。X射线吸收近边光谱(XANES)光谱证实了在CoS₂纳米颗粒与NS-G(氮和硫掺杂的还原氧化石墨烯)之间的界面成功构建了强桥连键(Co-N/S-C)。这些桥连键可作为电子传输通道加速反应动力学,从而在低过电位下实现电催化NRR。正如预期的那样,CoS₂/NS-G杂化物表现出优异的NRR活性,在相对于可逆氢电极(RHE)为-0.05 V时具有25.9%的高NH₃法拉第效率。此外,该策略具有通用性,可扩展到一系列其他强耦合金属硫化物杂化物。这项工作提供了一种设计用于氨生产的先进材料的方法。