Suppr超能文献

基于机器学习的用于高能锂硫电池开发的电催化材料设计

Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development.

作者信息

Han Zhiyuan, Chen An, Li Zejian, Zhang Mengtian, Wang Zhilong, Yang Lixue, Gao Runhua, Jia Yeyang, Ji Guanjun, Lao Zhoujie, Xiao Xiao, Tao Kehao, Gao Jing, Lv Wei, Wang Tianshuai, Li Jinjin, Zhou Guangmin

机构信息

Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

Nat Commun. 2024 Sep 29;15(1):8433. doi: 10.1038/s41467-024-52550-9.

Abstract

The practical development of Li | |S batteries is hindered by the slow kinetics of polysulfides conversion reactions during cycling. To circumvent this limitation, researchers suggested the use of transition metal-based electrocatalytic materials in the sulfur-based positive electrode. However, the atomic-level interactions among multiple electrocatalytic sites are not fully understood. Here, to improve the understanding of electrocatalytic sites, we propose a multi-view machine-learned framework to evaluate electrocatalyst features using limited datasets and intrinsic factors, such as corrected d orbital properties. Via physicochemical characterizations and theoretical calculations, we demonstrate that orbital coupling among sites induces shifts in band centers and alterations in the spin state, thus influencing interactions with polysulfides and resulting in diverse Li-S bond breaking and lithium migration barriers. Using a carbon-coated Fe/Co electrocatalyst (synthesized using recycled Li-ion battery electrodes as raw materials) at the positive electrode of a Li | |S pouch cell with high sulfur loading and lean electrolyte conditions, we report an initial specific energy of 436 Wh kg (whole mass of the cell) at 67 mA and 25 °C.

摘要

锂|硫电池的实际发展受到循环过程中多硫化物转化反应动力学缓慢的阻碍。为了克服这一限制,研究人员建议在硫基正极中使用过渡金属基电催化材料。然而,多个电催化位点之间的原子级相互作用尚未完全了解。在此,为了增进对电催化位点的理解,我们提出了一个多视图机器学习框架,以利用有限的数据集和内在因素(如校正后的d轨道性质)来评估电催化剂的特性。通过物理化学表征和理论计算,我们证明位点之间的轨道耦合会导致能带中心的移动和自旋态的改变,从而影响与多硫化物的相互作用,并导致不同的锂-硫键断裂和锂迁移势垒。在具有高硫负载和贫电解质条件的锂|硫软包电池的正极上使用碳包覆的铁/钴电催化剂(以回收的锂离子电池电极作为原材料合成),我们报道了在67 mA和25°C下初始比能量为436 Wh kg(电池整体质量)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d6/11541723/6b7c79f37855/41467_2024_52550_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验