Suppr超能文献

高血压老年患者术前急性心力衰竭的预测模型:SHAP 值和交互分析的双重视角。

Predictive modeling of preoperative acute heart failure in older adults with hypertension: a dual perspective of SHAP values and interaction analysis.

机构信息

Department of Geriatric Orthopedics, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China.

Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, China.

出版信息

BMC Med Inform Decis Mak. 2024 Nov 6;24(1):329. doi: 10.1186/s12911-024-02734-6.

Abstract

BACKGROUND

In older adults with hypertension, hip fractures accompanied by preoperative acute heart failure significantly elevate surgical risks and adverse outcomes, necessitating timely identification and management to improve patient outcomes.

RESEARCH OBJECTIVE

This study aims to enhance the early recognition of acute heart failure in older hypertensive adults prior to hip fracture surgery by developing a predictive model using logistic regression (LR) and machine learning methods, optimizing preoperative assessment and management.

METHODS

Employing a retrospective study design, we analyzed hypertensive older adults who underwent hip fracture surgery at Hebei Medical University Third Hospital from January 2018 to December 2022. Predictive models were constructed using LASSO regression and multivariable logistic regression, evaluated via nomogram charts. Five additional machine learning methods were utilized, with variable importance assessed using SHAP values and the impact of key variables evaluated through multivariate correlation analysis and interaction effects.

RESULTS

The study included 1,370 patients. LASSO regression selected 18 key variables, including sex, age, coronary heart disease, pulmonary infection, ventricular arrhythmias, acute myocardial infarction, and anemia. The logistic regression model demonstrated robust performance with an AUC of 0.753. Although other models outperformed it in sensitivity and F1 score, logistic regression's discriminative ability was significant for clinical decision-making. The Gradient Boosting Machine model, notable for a sensitivity of 95.2%, indicated substantial capability in identifying patients at risk, crucial for reducing missed diagnoses.

CONCLUSION

We developed and compared efficacy of predictive models using logistic regression and machine learning, interpreting them with SHAP values and analyzing key variable interactions. This offers a scientific basis for assessing preoperative heart failure risk in older adults with hypertension and hip fractures, providing significant guidance for individualized treatment strategies and underscoring the value of applying machine learning in clinical settings.

摘要

背景

在患有高血压的老年患者中,髋部骨折伴术前急性心力衰竭显著增加了手术风险和不良预后,需要及时识别和管理,以改善患者的结局。

研究目的

本研究旨在通过使用逻辑回归(LR)和机器学习方法开发预测模型,提高对术前伴有髋部骨折的高血压老年患者急性心力衰竭的早期识别能力,从而优化术前评估和管理。

方法

采用回顾性研究设计,分析了 2018 年 1 月至 2022 年 12 月在河北医科大学第三医院接受髋部骨折手术的高血压老年患者。使用 LASSO 回归和多变量逻辑回归构建预测模型,并通过列线图进行评估。还使用了另外 5 种机器学习方法,通过 SHAP 值评估变量重要性,并通过多元相关分析和交互作用评估关键变量的影响。

结果

该研究共纳入 1370 例患者。LASSO 回归选择了 18 个关键变量,包括性别、年龄、冠心病、肺部感染、室性心律失常、急性心肌梗死和贫血。逻辑回归模型表现出良好的性能,AUC 为 0.753。虽然其他模型在敏感性和 F1 评分方面表现更好,但逻辑回归的判别能力对于临床决策具有重要意义。梯度提升机模型以 95.2%的敏感性为特点,表明其在识别风险患者方面具有强大的能力,对于减少漏诊至关重要。

结论

我们开发并比较了使用逻辑回归和机器学习的预测模型的效果,通过 SHAP 值解释它们,并分析关键变量的相互作用。这为评估高血压合并髋部骨折老年患者术前心力衰竭风险提供了科学依据,为个体化治疗策略提供了重要指导,并强调了在临床环境中应用机器学习的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5817/11539738/6dc75ff8ebaa/12911_2024_2734_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验