Saelor Sittikorn, Kongjan Prawit, Prasertsan Poonsuk, Mamimin Chonticha, O-Thong Sompong
Department of Biological Science, Faculty of Science and Digital Innovation, Thaksin University, Phatthalung 93210, Thailand.
Faculty of Science and Technology, Hatyai University, Hat Yai, Songkhla 90110, Thailand.
Heliyon. 2024 Oct 22;10(20):e39668. doi: 10.1016/j.heliyon.2024.e39668. eCollection 2024 Oct 30.
This study investigated the effects of various pretreatment methods on the anaerobic digestibility of oil palm empty fruit bunches (EFB) for methane production. Pretreatment methods included weak alkaline (2 % Ca(OH)), weak acid (2 % acetic acid), acidified palm oil mill effluent (POME), biogas effluent, hydrothermal (180 °C, 190 °C, and 200 °C), and microwave pretreatments. All pretreatment methods enhanced methane yield compared to untreated EFB (189.45 mL-CH/g-VS), with weak alkaline pretreatment being the most effective (277.11 mL-CH/g-VS), followed by hydrothermal pretreatment at 180 °C (244.33 mL-CH/g-VS) and biogas effluent pretreatment (238.32 mL-CH/g-VS). The enhanced methane yield was attributed to increased cellulose content (45.5 % for weak alkaline pretreatment), reduced hemicellulose (18.0 % for hydrothermal pretreatment at 200 °C), and lignin contents (19.0 % for hydrothermal pretreatment at 200 °C), decreased crystallinity index (40.0 % for hydrothermal pretreatment at 200 °C), and increased surface area. Weak alkaline pretreatment also showed the highest net energy balance (8.73 kJ/g-VS) and a short break-even point (2 years). Microbial community analysis revealed that weak alkaline pretreatment favored the growth of syntrophic acetate-oxidizing bacteria and hydrogenotrophic methanogens, contributing to improved methane yield. This study demonstrates the potential of EFB pretreatment, particularly weak alkaline and biogas effluent pretreatment, for enhancing methane production and sustainable management of palm oil mill waste.
本研究调查了各种预处理方法对油棕空果串(EFB)厌氧消化产甲烷的影响。预处理方法包括弱碱(2% Ca(OH))、弱酸(2% 乙酸)、酸化棕榈油厂废水(POME)、沼液、水热(180℃、190℃和200℃)以及微波预处理。与未处理的EFB(189.45 mL-CH/g-VS)相比,所有预处理方法均提高了甲烷产量,其中弱碱预处理最为有效(277.11 mL-CH/g-VS),其次是180℃的水热预处理(244.33 mL-CH/g-VS)和沼液预处理(238.32 mL-CH/g-VS)。甲烷产量的提高归因于纤维素含量增加(弱碱预处理为45.5%)、半纤维素减少(200℃水热预处理为18.0%)和木质素含量减少(200℃水热预处理为19.0%)、结晶度指数降低(200℃水热预处理为40.0%)以及表面积增加。弱碱预处理还显示出最高的净能量平衡(8.73 kJ/g-VS)和较短的收支平衡点(2年)。微生物群落分析表明,弱碱预处理有利于互营乙酸氧化菌和氢营养型产甲烷菌的生长,有助于提高甲烷产量。本研究证明了EFB预处理,特别是弱碱和沼液预处理,在提高甲烷产量和棕榈油厂废弃物可持续管理方面的潜力。