Pączek Kewin, Jelito Damian, Pitera Marcin, Wyłomańska Agnieszka
Institute of Mathematics, Jagiellonian University, Kraków, Poland.
Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wrocław, Poland.
J Appl Stat. 2024 Jun 5;51(15):3154-3177. doi: 10.1080/02664763.2024.2340592. eCollection 2024.
In this paper we introduce a novel statistical framework based on the first two quantile conditional moments that facilitates effective goodness-of-fit testing for one-sided Lévy distributions. The scale-ratio framework introduced in this paper extends our previous results in which we have shown how to extract unique distribution features using conditional variance ratio for the generic class of -stable distributions. We show that the conditional moment-based goodness-of-fit statistics are a good alternative to other methods introduced in the literature tailored to the one-sided Lévy distributions. The usefulness of our approach is verified using an empirical test power study. For completeness, we also derive the asymptotic distributions of the test statistics and show how to apply our framework to real data.
在本文中,我们引入了一种基于前两个分位数条件矩的新型统计框架,该框架有助于对单侧 Lévy 分布进行有效的拟合优度检验。本文引入的尺度比框架扩展了我们之前的结果,在之前的结果中我们展示了如何使用条件方差比为一般类别的稳定分布提取独特的分布特征。我们表明,基于条件矩的拟合优度统计量是文献中针对单侧 Lévy 分布引入的其他方法的良好替代方案。我们通过实证检验功效研究验证了我们方法的有效性。为了完整性,我们还推导了检验统计量的渐近分布,并展示了如何将我们的框架应用于实际数据。