Suppr超能文献

使用神经网络和模仿真实世界智能手机使用情况的惯性测量单元(IMU)数据准确检测步态事件。

Accurate detection of gait events using neural networks and IMU data mimicking real-world smartphone usage.

作者信息

Larsen Aske G, Sadolin Line Ø, Thomsen Trine R, Oliveira Anderson S

机构信息

Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.

Faculty of Behavioural and Movement Sciences, Biomechanics, Vrije Universiteit, Amsterdam, The Netherlands.

出版信息

Comput Methods Biomech Biomed Engin. 2024 Nov 7:1-11. doi: 10.1080/10255842.2024.2423252.

Abstract

Wearable technologies such as inertial measurement units (IMUs) can be used to evaluate human gait and improve mobility, but sensor fixation is still a limitation that needs to be addressed. Therefore, aim of this study was to create a machine learning algorithm to predict gait events using a single IMU mimicking the carrying of a smartphone. Fifty-two healthy adults (35 males/17 females) walked on a treadmill at various speeds while carrying a surrogate smartphone in the right hand, front right trouser pocket, and right jacket pocket. Ground-truth gait events (e.g. heel strikes and toe-offs) were determined bilaterally using a gold standard optical motion capture system. The tri-dimensional accelerometer and gyroscope data were segmented in 20-ms windows, which were labelled as containing or not the gait events. A long-short term memory neural network (LSTM-NN) was used to classify the 20-ms windows as containing the heel strike or toe-off for the right or left legs, using 80% of the data for training and 20% of the data for testing. The results demonstrated an overall accuracy of 92% across all phone positions and walking speeds, with a slightly higher accuracy for the right-side predictions (∼94%) when compared to the left side (∼91%). Moreover, we found a median time error <3% of the gait cycle duration across all speeds and positions (∼77 ms). Our results represent a promising first step towards using smartphones for remote gait analysis without requiring IMU fixation, but further research is needed to enhance generalizability and explore real-world deployment.

摘要

可穿戴技术,如惯性测量单元(IMU),可用于评估人类步态并改善行动能力,但传感器固定仍是一个需要解决的限制因素。因此,本研究的目的是创建一种机器学习算法,使用模拟携带智能手机的单个IMU来预测步态事件。52名健康成年人(35名男性/17名女性)右手、右前裤兜和右夹克兜中携带模拟智能手机,以不同速度在跑步机上行走。使用金标准光学运动捕捉系统双侧确定地面真实步态事件(如脚跟撞击和脚趾离地)。三维加速度计和陀螺仪数据被分割为20毫秒的窗口,标记为包含或不包含步态事件。使用长短期记忆神经网络(LSTM-NN)将20毫秒的窗口分类为包含右腿或左腿的脚跟撞击或脚趾离地,使用80%的数据进行训练,20%的数据进行测试。结果表明,在所有手机位置和行走速度下,总体准确率为92%,右侧预测(约94%)的准确率略高于左侧(约91%)。此外,我们发现在所有速度和位置下,中位时间误差<步态周期持续时间的3%(约77毫秒)。我们的结果代表了朝着使用智能手机进行远程步态分析迈出的有希望的第一步,无需IMU固定,但需要进一步研究以提高通用性并探索实际应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验