Tran Tommy H, F Escapa Isabel, Roberts Ari Q, Gao Wei, Obawemimo Abiola C, Segre Julia A, Kong Heidi H, Conlan Sean, Kelly Matthew S, Lemon Katherine P
Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA.
The Forsyth Institute (Microbiology), Cambridge, Massachusetts, USA.
mSystems. 2024 Dec 17;9(12):e0113224. doi: 10.1128/msystems.01132-24. Epub 2024 Nov 7.
e species are globally ubiquitous in human nasal microbiota across the lifespan. Moreover, nasal microbiota profiles typified by higher relative abundances of are often positively associated with health. Among the most common human nasal species are , , and . To gain insight into the functions of these four species, we identified genomic, phylogenomic, and pangenomic properties and estimated the metabolic capabilities of 87 distinct human nasal strain genomes: 31 from Botswana and 56 from the United States. had geographically distinct clades consistent with localized strain circulation, whereas some strains from the other species had wide geographic distribution spanning Africa and North America. All species had similar genomic and pangenomic structures. Gene clusters assigned to all COG metabolic categories were overrepresented in the persistent versus accessory genome of each species indicating limited strain-level variability in metabolic capacity. Based on prevalence data, at least two species likely coexist in the nasal microbiota of 82% of adults. So, it was surprising that core metabolic capabilities were highly conserved among the four species indicating limited species-level metabolic variation. Strikingly, strains in the U.S. clade of lacked genes for assimilatory sulfate reduction present in most of the strains in the Botswana clade and in the other studied species, indicating a recent, geographically related loss of assimilatory sulfate reduction. Overall, the minimal species and strain variability in metabolic capacity implies coexisting strains might have limited ability to occupy distinct metabolic niches.
Pangenomic analysis with estimation of functional capabilities facilitates our understanding of the full biologic diversity of bacterial species. We performed systematic genomic, phylogenomic, and pangenomic analyses with qualitative estimation of the metabolic capabilities of four common human nasal species, along with focused experimental validations, generating a foundational resource. The prevalence of each species in human nasal microbiota is consistent with the common coexistence of at least two species. We identified a notably high level of metabolic conservation within and among species indicating limited options for species to occupy distinct metabolic niches, highlighting the importance of investigating interactions among nasal species. Comparing strains from two continents, had restricted geographic strain distribution characterized by an evolutionarily recent loss of assimilatory sulfate reduction in U.S. strains. Our findings contribute to understanding the functions of within human nasal microbiota and to evaluating their potential for future use as biotherapeutics.
这些物种在人类鼻腔微生物群中终生全球普遍存在。此外,以这些物种相对丰度较高为特征的鼻腔微生物群谱通常与健康呈正相关。人类鼻腔中最常见的这些物种包括[具体物种1]、[具体物种2]和[具体物种3]。为了深入了解这四个物种的功能,我们确定了基因组、系统发育基因组和泛基因组特性,并估计了87个不同的人类鼻腔[物种名称]菌株基因组的代谢能力:31个来自博茨瓦纳,56个来自美国。[具体物种1]具有与局部菌株传播一致的地理上不同的进化枝,而其他物种的一些菌株具有跨越非洲和北美的广泛地理分布。所有物种都具有相似的基因组和泛基因组结构。分配到所有COG代谢类别的基因簇在每个物种的持久基因组与辅助基因组中都过度富集,表明代谢能力在菌株水平上的变异性有限。根据流行率数据,至少两种[具体物种]可能共存于82%的成年人鼻腔微生物群中。因此,令人惊讶的是,这四个物种之间的核心代谢能力高度保守,表明物种水平的代谢变异有限。引人注目的是,美国进化枝中的[具体物种1]菌株缺乏博茨瓦纳进化枝和其他研究物种中大多数菌株所具有的同化硫酸盐还原基因,这表明同化硫酸盐还原在地理上最近有所丧失。总体而言,代谢能力的最小物种和菌株变异性意味着共存菌株占据不同代谢生态位的能力可能有限。
通过估计功能能力进行泛基因组分析有助于我们理解细菌物种的全部生物多样性。我们进行了系统的基因组、系统发育基因组和泛基因组分析,并对四种常见的人类鼻腔[物种名称]物种的代谢能力进行了定性估计,同时进行了重点实验验证,生成了一个基础资源。每个物种在人类鼻腔微生物群中的流行率与至少两种物种的共同共存情况一致。我们在物种内部和物种之间发现了显著高水平的代谢保守性,表明物种占据不同代谢生态位的选择有限,突出了研究鼻腔[物种名称]物种之间相互作用的重要性。比较来自两个大陆的菌株,[具体物种1]具有有限的地理菌株分布,其特征是美国菌株在进化上最近丧失了同化硫酸盐还原能力。我们的发现有助于理解[具体物种]在人类鼻腔微生物群中的功能,并评估它们未来作为生物治疗剂的潜力。