Suppr超能文献

生物炭-细菌耦合系统增强了基于生命周期评估和环境安全分析的含酚废水的生物修复。

Biochar-bacteria coupling system enhanced the bioremediation of phenol wastewater-based on life cycle assessment and environmental safety analysis.

机构信息

College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang 330045, PR China.

College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang 330045, PR China.

出版信息

J Hazard Mater. 2024 Dec 5;480:136414. doi: 10.1016/j.jhazmat.2024.136414. Epub 2024 Nov 5.

Abstract

The efficient treatment of phenol wastewater is of great necessity since it induces serious pollution of water and soil ecosystems. Using biochar-immobilized functional microorganisms can innovatively and sustainably deal with the existing problem. In this study, we utilized response surface methodology (RSM) combined with life cycle assessment (LCA) to improve phenol biodegradation rate through a novel separated alkali-resistant and thermophilic strain Bacillus halotolerans ACY. Bioinformatic analysis revealed the genetic foundation of ACY to adapt to harsh environments. The characteristics of pig manure biochar (PMB) produced at varying pyrolysis temperatures (300-700 ℃) and adsorption experiment were investigated, immobilization of the phenol-degrading ACY on PMB600 under alkaline and high pollution load promoted phenol removal and extreme environment resistance, and the phenol removal rate reached 99.5 % in 7d in actual phenol wastewater, which increased compared with those achieved by PMB (50.6 %) and free bacteria (80.5 %) alone. Scanning Electron Microscope (SEM) and Fourier transform infrared spectrometry (FTIR) observations indicated the successful bacterial immobilization on PMB600. Reusability and economic cost study further demonstrated PMB600 as an excellent carrier for wastewater treatment. LC-MS, toxicology and carbon footprint analyses demonstrated that bacterial metabolism exerted synergy with adsorption for phenol removal, while biodegradation exerted the predominant impact on the immobilized bacterial system. This study provides an eco-friendly and effective approach to treat phenol wastewater.

摘要

高效处理含酚废水非常必要,因为它会严重污染水和土壤生态系统。利用生物炭固定化功能微生物可以创新性和可持续地解决现有问题。在这项研究中,我们利用响应面法(RSM)结合生命周期评估(LCA),通过一种新型的耐碱和嗜热菌株芽孢杆菌 ACY 来提高苯酚的生物降解率。生物信息学分析揭示了 ACY 适应恶劣环境的遗传基础。研究了在不同热解温度(300-700℃)下制备的猪粪生物炭(PMB)的特性和吸附实验,在碱性和高污染负荷下,将苯酚降解菌 ACY 固定在 PMB600 上,促进了苯酚的去除和极端环境的抗性,在实际含酚废水中 7 天内的苯酚去除率达到 99.5%,与 PMB(50.6%)和游离细菌(80.5%)单独处理相比有所提高。扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)观察表明细菌成功固定在 PMB600 上。可重复使用性和经济成本研究进一步证明了 PMB600 是一种处理废水的优良载体。LC-MS、毒理学和碳足迹分析表明,细菌代谢与吸附协同作用去除苯酚,而生物降解对固定化细菌系统的影响更为显著。本研究为处理含酚废水提供了一种环保、有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验