Suppr超能文献

一种用于预测昼夜及空间连续近地表气温的改进型机器学习模型。

An improved machine learning-based model for prediction of diurnal and spatially continuous near surface air temperature.

作者信息

Adeniran Ibrahim Ademola, Nazeer Majid, Wong Man Sing, Chan Pak-Wai

机构信息

Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China.

Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hong Kong, SAR, China.

出版信息

Sci Rep. 2024 Nov 9;14(1):27342. doi: 10.1038/s41598-024-78349-8.

Abstract

Near-surface air temperature (Tair) is crucial for assessing urban thermal conditions and their impact on human health. Traditional Tair estimation methods, reliant on sparse weather stations, often miss spatial variability. This study proposes a novel framework using a federated learning artificial neural network (FLANN) for fine-scale Tair prediction. Leveraging spatially complete thermal data from Landsat 8/9, Sentinel 3, and Himawari 8/9 (105 acquisition days, 2013-2023), and data from automatic weather stations, 23 predictor variables were extracted. After rigorous selection processes, nine variables significantly correlated with Tair were identified. Comparative analysis against established machine learning and linear models, using cross-validation data, showed FLANN's superior performance with a Pearson correlation coefficient (r) of 0.98 and a root mean square error (RMSE) of 0.97 K, compared to r and RMSE of 0.85 and 1.09, respectively, for the linear model. FLANN showed greater improvements for urban stations with r and RMSE differences of 0.19 and - 2.03 K. Application of FLANN to predict Tair in Hong Kong in July 2023 enabled detailed urban heat island (UHI) analysis, revealing dynamic spatial and temporal UHI patterns. This study highlights FLANN's potential for accurate Tair prediction and UHI analysis, enhancing urban thermal environment management.

摘要

近地表气温(Tair)对于评估城市热状况及其对人类健康的影响至关重要。传统的Tair估算方法依赖于稀疏的气象站,往往会忽略空间变异性。本研究提出了一种使用联邦学习人工神经网络(FLANN)进行精细尺度Tair预测的新框架。利用来自Landsat 8/9、Sentinel 3和Himawari 8/9(2013 - 2023年105个采集日)的空间完整热数据以及自动气象站的数据,提取了23个预测变量。经过严格的筛选过程,确定了9个与Tair显著相关的变量。使用交叉验证数据与已建立的机器学习和线性模型进行比较分析,结果表明FLANN性能优越,皮尔逊相关系数(r)为0.98,均方根误差(RMSE)为0.97K,而线性模型的r和RMSE分别为0.85和1.09。对于城市站点,FLANN的改进更大,r和RMSE差异分别为0.19和 - 2.03K。将FLANN应用于预测2023年7月香港的Tair,实现了详细的城市热岛(UHI)分析,揭示了动态的时空UHI模式。本研究突出了FLANN在准确预测Tair和UHI分析方面的潜力,有助于加强城市热环境管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eb5/11550329/f8b079aada1b/41598_2024_78349_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验