Suppr超能文献

利用高分辨率卫星数据估算美国东南部的每日气温:一项统计建模研究。

Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: A statistical modeling study.

作者信息

Shi Liuhua, Liu Pengfei, Kloog Itai, Lee Mihye, Kosheleva Anna, Schwartz Joel

机构信息

Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA.

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

出版信息

Environ Res. 2016 Apr;146:51-8. doi: 10.1016/j.envres.2015.12.006. Epub 2015 Dec 21.

Abstract

Accurate estimates of spatio-temporal resolved near-surface air temperature (Ta) are crucial for environmental epidemiological studies. However, values of Ta are conventionally obtained from weather stations, which have limited spatial coverage. Satellite surface temperature (Ts) measurements offer the possibility of local exposure estimates across large domains. The Southeastern United States has different climatic conditions, more small water bodies and wetlands, and greater humidity in contrast to other regions, which add to the challenge of modeling air temperature. In this study, we incorporated satellite Ts to estimate high resolution (1km×1km) daily Ta across the southeastern USA for 2000-2014. We calibrated Ts-Ta measurements using mixed linear models, land use, and separate slopes for each day. A high out-of-sample cross-validated R(2) of 0.952 indicated excellent model performance. When satellite Ts were unavailable, linear regression on nearby monitors and spatio-temporal smoothing was used to estimate Ta. The daily Ta estimations were compared to the NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) model. A good agreement with an R(2) of 0.969 and a mean squared prediction error (RMSPE) of 1.376°C was achieved. Our results demonstrate that Ta can be reliably predicted using this Ts-based prediction model, even in a large geographical area with topography and weather patterns varying considerably.

摘要

准确估计时空分辨的近地表气温(Ta)对于环境流行病学研究至关重要。然而,Ta值传统上是从气象站获取的,而气象站的空间覆盖范围有限。卫星地表温度(Ts)测量为跨大区域的局部暴露估计提供了可能性。与其他地区相比,美国东南部具有不同的气候条件、更多的小水体和湿地以及更高的湿度,这增加了气温建模的挑战。在本研究中,我们纳入卫星Ts来估计2000 - 2014年美国东南部高分辨率(1km×1km)的每日Ta。我们使用混合线性模型、土地利用以及每天的单独斜率对Ts - Ta测量值进行校准。样本外交叉验证的高R(2)值为0.952,表明模型性能优异。当无法获取卫星Ts时,利用附近监测器的线性回归和时空平滑来估计Ta。将每日Ta估计值与美国国家航空航天局(NASA)的现代时代回顾性分析研究与应用(MERRA)模型进行比较。实现了良好的一致性,R(2)为0.969,平均平方预测误差(RMSPE)为1.376°C。我们的结果表明,即使在地形和天气模式差异很大的大地理区域,使用这种基于Ts的预测模型也可以可靠地预测Ta。

相似文献

9
A method for improving the estimation of extreme air temperature by satellite.一种改进卫星极端气温估算的方法。
Sci Total Environ. 2022 Sep 1;837:155887. doi: 10.1016/j.scitotenv.2022.155887. Epub 2022 May 12.

引用本文的文献

本文引用的文献

7
Impact of ambient temperature on children's health: a systematic review.环境温度对儿童健康的影响:系统评价。
Environ Res. 2012 Aug;117:120-31. doi: 10.1016/j.envres.2012.07.002. Epub 2012 Jul 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验