Kou Minghao, Ma Hao, Wang Xuan, Heianza Yoriko, Qi Lu
Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Geroscience. 2025 Apr;47(2):2335-2349. doi: 10.1007/s11357-024-01407-6. Epub 2024 Nov 12.
Investigating brain-enriched proteins with machine learning methods may enable a brain-specific understanding of brain aging and provide insights into the molecular mechanisms and pathological pathways of dementia. The study aims to analyze associations of brain-specific plasma proteomic aging signature with risks of incident dementia. In 45,429 dementia-free UK Biobank participants at baseline, we generated a brain-specific biological age using 63 brain-enriched plasma proteins with machine learning methods. The brain age gap was estimated, and Cox proportional hazards models were used to study the association with incident all-cause dementia, Alzheimer's disease (AD), and vascular dementia. Per-unit increment in the brain age gap z-score was associated with significantly higher risks of all-cause dementia (hazard ratio [95% confidence interval], 1.67 [1.56-1.79], P < 0.001), AD (1.85 [1.66-2.08], P < 0.001), and vascular dementia (1.86 [1.55-2.24], P < 0.001), respectively. Notably, 2.1% of the study population exhibited extreme old brain aging defined as brain age gap z-score > 2, correlating with over threefold increased risks of all-cause dementia and vascular dementia (3.42 [2.25-5.20], P < 0.001, and 3.41 [1.05-11.13], P = 0.042, respectively), and fourfold increased risk of AD (4.45 [2.32-8.54], P < 0.001). The associations were stronger among participants with healthier lifestyle factors (all P-interaction < 0.05). These findings were corroborated by magnetic resonance imaging assessments showing that a higher brain age gap aligns global pathophysiology of dementia, including global and regional atrophy in gray matter, and white matter lesions (P < 0.001). The brain-specific proteomic age gap is a powerful biomarker of brain aging, indicative of dementia risk and neurodegeneration.
用机器学习方法研究大脑富集蛋白可能有助于从大脑特异性角度理解大脑衰老,并为痴呆症的分子机制和病理途径提供见解。该研究旨在分析大脑特异性血浆蛋白质组衰老特征与新发痴呆症风险之间的关联。在45429名基线时无痴呆症的英国生物银行参与者中,我们使用机器学习方法,通过63种大脑富集血浆蛋白生成了大脑特异性生物学年龄。估计了大脑年龄差距,并使用Cox比例风险模型研究其与新发全因痴呆症、阿尔茨海默病(AD)和血管性痴呆症的关联。大脑年龄差距z分数每增加一个单位,与全因痴呆症(风险比[95%置信区间],1.67[1.56 - 1.79],P < 0.001)、AD(1.85[1.66 - 2.08],P < 0.001)和血管性痴呆症(1.86[1.55 - 2.24],P < 0.001)的风险显著升高相关。值得注意的是,2.1%的研究人群表现出极端的大脑衰老,定义为大脑年龄差距z分数>2,这与全因痴呆症和血管性痴呆症风险增加三倍以上相关(分别为3.42[2.25 - 5.20],P < 0.001和3.41[1.05 - 11.13],P = 0.042),以及AD风险增加四倍(4.45[2.32 - 8.54],P < 0.001)。在生活方式因素更健康的参与者中,这些关联更强(所有P交互作用<0.05)。磁共振成像评估证实了这些发现,表明较高的大脑年龄差距与痴呆症的整体病理生理学一致,包括灰质的整体和区域萎缩以及白质病变(P < 0.001)。大脑特异性蛋白质组年龄差距是大脑衰老的有力生物标志物,指示痴呆症风险和神经退行性变。