State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
Suzhou Research Institute of Shandong University, Room607, Building B of NUSP, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu, P. R. China.
Nat Commun. 2024 Nov 12;15(1):9790. doi: 10.1038/s41467-024-54191-4.
The complexities encountered in microbial metabolic engineering continue to elude prediction and design. Unravelling these complexities requires strategies that go beyond conventional genetics. Using multiplex mutagenesis with double stranded (ds) DNA, we extend the multiplex repertoire previously pioneered using single strand (ss) oligonucleotides. We present ReaL-MGE (Recombineering and Linear CRISPR/Cas9 assisted Multiplex Genome Engineering). ReaL-MGE enables precise manipulation of numerous large DNA sequences as demonstrated by the simultaneous insertion of multiple kilobase-scale sequences into E. coli, Schlegelella brevitalea and Pseudomonas putida genomes without any off-target errors. ReaL-MGE applications to enhance intracellular malonyl-CoA levels in these three genomes achieved 26-, 20-, and 13.5-fold elevations respectively, thereby promoting target polyketide yields by more than an order of magnitude. In a further round of ReaL-MGE, we adapt S. brevitalea to malonyl-CoA elevation utilizing a restricted carbon source (lignocellulose from straw) to realize production of the anti-cancer secondary metabolite, epothilone from lignocellulose. Multiplex mutagenesis with dsDNA enables the incorporation of lengthy segments that can fully encode additional functions. Additionally, the utilization of PCR to generate the dsDNAs brings flexible design advantages. ReaL-MGE presents strategic options in microbial metabolic engineering.
微生物代谢工程中遇到的复杂性仍然难以预测和设计。要解决这些复杂性,需要超越传统遗传学的策略。我们使用双链 (ds) DNA 的多重诱变,扩展了以前使用单链 (ss) 寡核苷酸开创的多重谱。我们提出了 ReaL-MGE(重组和线性 CRISPR/Cas9 辅助多重基因组工程)。ReaL-MGE 能够精确操作许多大型 DNA 序列,如在大肠杆菌、Schlegelella brevitalea 和 Pseudomonas putida 基因组中同时插入多个千碱基规模的序列,而没有任何脱靶错误。ReaL-MGE 在这三个基因组中应用于提高细胞内丙二酰辅酶 A 水平,分别实现了 26 倍、20 倍和 13.5 倍的提升,从而使目标聚酮产量提高了一个数量级以上。在进一步的 ReaL-MGE 中,我们利用有限的碳源(来自秸秆的木质纤维素)使 S. brevitalea 适应丙二酰辅酶 A 的增加,从而实现了从木质纤维素生产抗癌次生代谢物埃博霉素。dsDNA 的多重诱变能够掺入可以完全编码其他功能的长片段。此外,PCR 生成 dsDNA 带来了灵活的设计优势。ReaL-MGE 为微生物代谢工程提供了战略选择。