Suppr超能文献

基于人工智能的靶向G蛋白偶联受体的治疗药物鉴定:引入配体类型分类器和系统生物学

AI-based identification of therapeutic agents targeting GPCRs: introducing ligand type classifiers and systems biology.

作者信息

Goßen Jonas, Ribeiro Rui Pedro, Bier Dirk, Neumaier Bernd, Carloni Paolo, Giorgetti Alejandro, Rossetti Giulia

机构信息

Institute for Computational Biomedicine (INM-9/IAS-5) Forschungszentrum Jülich Wilhelm-Johnen-Straße 52428 Jülich Germany

Faculty of Mathematics, Computer Science and Natural Sciences RWTH Aachen University Aachen Germany.

出版信息

Chem Sci. 2023 Jul 24;14(32):8651-8661. doi: 10.1039/d3sc02352d. eCollection 2023 Aug 16.

Abstract

Identifying ligands targeting G protein coupled receptors (GPCRs) with novel chemotypes other than the physiological ligands is a challenge for screening campaigns. Here we present an approach that identifies novel chemotype ligands by combining structural data with a random forest agonist/antagonist classifier and a signal-transduction kinetic model. As a test case, we apply this approach to identify novel antagonists of the human adenosine transmembrane receptor type 2A, an attractive target against Parkinson's disease and cancer. The identified antagonists were tested here in a radio ligand binding assay. Among those, we found a promising ligand whose chemotype differs significantly from all so-far reported antagonists, with a binding affinity of 310 ± 23.4 nM. Thus, our protocol emerges as a powerful approach to identify promising ligand candidates with novel chemotypes while preserving antagonistic potential and affinity in the nanomolar range.

摘要

识别除生理配体之外具有新型化学结构类型的靶向G蛋白偶联受体(GPCR)的配体,对于筛选活动而言是一项挑战。在此,我们提出一种方法,该方法通过将结构数据与随机森林激动剂/拮抗剂分类器以及信号转导动力学模型相结合来识别新型化学结构类型的配体。作为一个测试案例,我们应用此方法来识别人类2A型腺苷跨膜受体的新型拮抗剂,该受体是对抗帕金森病和癌症的一个有吸引力的靶点。在此,通过放射性配体结合试验对所识别的拮抗剂进行了测试。在这些拮抗剂中,我们发现了一种有前景的配体,其化学结构类型与迄今报道的所有拮抗剂都有显著差异,结合亲和力为310±23.4 nM。因此,我们的方案成为一种强大的方法,可用于识别具有新型化学结构类型的有前景的配体候选物,同时在纳摩尔范围内保留拮抗潜力和亲和力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8909/10430665/dcf2920c5967/d3sc02352d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验