Suppr超能文献

一种使用卷积方法的无创心率预测方法。

A non-invasive heart rate prediction method using a convolutional approach.

作者信息

Karapinar Ercument, Sevinc Ender

机构信息

Elect. Eng. Department, Ankara Science University, Maltepe Mah. Sehit Gonenc Cad. No:5, Ankara, 06570, Turkey.

Comp. Eng. Department, Ankara Science University, Maltepe Mah. Sehit Gonenc Cad. No:5, Ankara, 06570, Turkey.

出版信息

Med Biol Eng Comput. 2025 Mar;63(3):901-914. doi: 10.1007/s11517-024-03217-6. Epub 2024 Nov 15.

Abstract

The research focuses on leveraging convolutional neural networks (CNNs) to enhance the analysis of physiological signals, specifically photoplethysmogram (PPG) data which is a valuable tool for non-invasive heart rate prediction. Recognizing the global challenge of heart failure, the study seeks to provide a rapid, accurate, and non-invasive alternative to traditional, uncomfortable blood pressure cuffs. To achieve more accurate and efficient heart rate estimates, a k-fold CNN model with an optimal number of convolutional layers is employed. While the findings show promising results, the study addresses potential sources of error in cuffless PPG-based heart rate measurement, including motion artifacts and skin color variations, emphasizing the need for validation against gold standard methods. The research optimizes a CNN model with optimal layers, operating on 1D arrays of 8-s data slices and employing k-fold cross-validation to mitigate probabilistic uncertainties. Finally, the model yields a remarkable minimum absolute error (MAE) rate of 6.98 beats per minute (bpm), marking a significant 10% improvement over recent studies. The study also advances medical diagnostics and data analysis, then lays a strong foundation for developing cost-effective, reliable devices that offer a more comfortable and efficient way of predicting heart rate.

摘要

该研究聚焦于利用卷积神经网络(CNN)来加强对生理信号的分析,特别是光电容积脉搏波描记图(PPG)数据,它是用于无创心率预测的一种宝贵工具。认识到心力衰竭这一全球性挑战,该研究旨在提供一种快速、准确且无创的替代方法,以取代传统的、令人不适的血压袖带。为了实现更准确和高效的心率估计,采用了具有最佳卷积层数的k折CNN模型。虽然研究结果显示出有前景的成果,但该研究探讨了基于无袖带PPG的心率测量中潜在的误差来源,包括运动伪影和肤色变化,强调了对照金标准方法进行验证的必要性。该研究优化了具有最佳层数的CNN模型,对8秒数据切片的一维数组进行操作,并采用k折交叉验证来减轻概率不确定性。最后,该模型产生了显著的每分钟6.98次心跳(bpm)的最小绝对误差(MAE)率,比近期研究有显著的10%的提升。该研究还推动了医学诊断和数据分析,为开发具有成本效益、可靠的设备奠定了坚实基础,这些设备提供了一种更舒适、高效的心率预测方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验