Suppr超能文献

改进的鱼鹰优化算法:一种解决电动汽车渗透下的最优无功功率分配问题的方案

Promoted Osprey Optimizer: a solution for ORPD problem with electric vehicle penetration.

作者信息

Liu Ziang, Jian Xiangzhou, Sadiq Touseef, Shaikh Zaffar Ahmed, Alfarraj Osama, Alblehai Fahad, Tolba Amr

机构信息

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pennsylvania, 15213, USA.

Department of Mechanical Engineering, Columbia University, New York, 10027, USA.

出版信息

Sci Rep. 2024 Nov 14;14(1):28052. doi: 10.1038/s41598-024-79185-6.

Abstract

This paper proposes a new optimization technique to make an integration between the Optimal Reactive Power Dispatch (ORPD) problem and Electric Vehicles (EV). Here, a modified metaheuristic algorithm, called the Promoted Osprey Optimizer (POO) is used for this purpose. Inspired by the hunting behavior of ospreys, a predatory bird species, the POO algorithm employs various strategies like diving, soaring, and gliding to effectively explore the search space and avoid local optima. To evaluate its performance, the POO-based model has been applied to the IEEE 118-bus and IEEE 57-bus systems, considering different scenarios of EV penetration. The experimental findings demonstrate that the POO algorithm can effectively optimize the reactive power dispatch problem with EV integration, achieving significant reductions in active power losses and voltage deviations toward several existing metaheuristic optimization techniques in different terms. The POO algorithm demonstrates a significant reduction in power loss, achieving up to 22.2% and 16.2% in the 57-bus and 118-bus systems, respectively. This improvement is accompanied by reductions in voltage deviation of up to 20.6% and 15.7%. In the 57-bus system, power loss is reduced from 2.35 MW to 1.93 MW, while voltage deviation decreases from 0.034 p.u. to 0.027 p.u. For the 118-bus system, power loss is lowered from 4.21 MW to 3.53 MW, and voltage deviation is reduced from 0.051 p.u. to 0.043 p.u. Furthermore, the POO algorithm surpasses other optimization methods in minimizing voltage deviation, achieving reductions of up to 0.056 p.u. in the 57-bus system and up to 0.163 p.u. in the 118-bus system. Consequently, the POO algorithm holds great potential as a valuable tool for power system operators and planners to optimize reactive power dispatch and enhance power system performance with EV integration.

摘要

本文提出了一种新的优化技术,用于实现最优无功功率调度(ORPD)问题与电动汽车(EV)之间的整合。在此,一种改进的元启发式算法,即改进鱼鹰优化器(POO)被用于此目的。受食肉鸟类鱼鹰的捕猎行为启发,POO算法采用了诸如俯冲、翱翔和滑翔等各种策略,以有效地探索搜索空间并避免局部最优。为了评估其性能,基于POO的模型已应用于IEEE 118节点和IEEE 57节点系统,考虑了电动汽车渗透率的不同场景。实验结果表明,POO算法能够有效地优化电动汽车整合情况下的无功功率调度问题,在不同方面相对于几种现有的元启发式优化技术,实现了有功功率损耗和电压偏差的显著降低。POO算法显示出功率损耗的显著降低,在57节点和118节点系统中分别达到了22.2%和16.2%。这种改进伴随着电压偏差分别降低了高达20.6%和15.7%。在57节点系统中,功率损耗从2.35兆瓦降至1.93兆瓦,而电压偏差从0.034标幺值降至0.027标幺值。对于118节点系统,功率损耗从4.21兆瓦降至3.53兆瓦,电压偏差从0.051标幺值降至0.043标幺值。此外,POO算法在最小化电压偏差方面优于其他优化方法,在57节点系统中电压偏差降低高达0.056标幺值,在1×18节点系统中高达0.163标幺值。因此,POO算法作为电力系统运营商和规划者优化无功功率调度以及通过电动汽车整合提高电力系统性能的有价值工具,具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b19/11564576/548aabeac64d/41598_2024_79185_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验