Alves Ricardo F, Raimundo Rafael A, Lima Bruno A S G, Loureiro Francisco J A, Fagg Duncan P, Macedo Daniel A, Gomes Uilame U, Morales Marco A
Federal University of Rio Grande do Norte, Department of Materials Science and Engineering, 59078-970 Natal, RN, Brazil.
Federal University of Paraíba, Department of Materials Science and Engineering, 58051-900 João Pessoa, PB, Brazil; TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
J Colloid Interface Sci. 2025 Feb 15;680(Pt A):818-831. doi: 10.1016/j.jcis.2024.11.068. Epub 2024 Nov 12.
In this study, high-entropy spinel oxides (CoNiMnFeCr)O were synthesized using a PVP-assisted sol-gel method, marking the first report of this approach for producing high-entropy oxides. This method provides new insights into morphology customization through precise temperature control during calcination. Samples were calcined at 800, 900, and 1000 °C, and structural, optical, and electrochemical characterizations were performed to evaluate the impact of synthesis conditions on the oxygen evolution reaction (OER) performance. X-ray diffraction (XRD) confirmed the formation of a single-phase spinel structure with face-centered cubic symmetry. UV-Vis spectroscopy revealed a band gap shift associated with calcination temperature, indicating subtle changes in electronic structure that can influence catalytic behavior. The S-HEO 800 sample exhibited the highest catalytic activity, achieving an overpotential of 316 mV at 10 mA cm. Electrochemical tests showed excellent short-term durability, with the electrodes maintaining stable performance for 24 h at 10 mA cm. Field emission gun scanning electron microscopy (FEGSEM) analysis revealed that particle size increased with calcination temperature, ranging from 96 nm (S-HEO 800) to 475 nm (S-HEO 1000). X-ray photoelectron spectroscopy (XPS) showed a higher concentration of Cr, Cr, and Ni ions on the surface of S-HEO 800, correlating with its superior OER performance. Additionally, Raman and FT-IR spectra confirmed the formation of the spinel phase and provided insights into metal-oxygen bonding. Electrochemical impedance spectroscopy (EIS) results indicated that S-HEO 800 exhibited the lowest charge transfer resistance (R), further supporting its enhanced catalytic behavior. These findings demonstrate the potential of the PVP-assisted sol-gel method to produce customized high-entropy oxides with tunable morphology, making them promising candidates for energy conversion applications, particularly in water electrolysis.
在本研究中,采用聚乙烯吡咯烷酮辅助溶胶-凝胶法合成了高熵尖晶石氧化物(CoNiMnFeCr)O,这是该方法用于制备高熵氧化物的首次报道。该方法通过煅烧过程中的精确温度控制,为形态定制提供了新的见解。样品在800、900和1000℃下煅烧,并进行结构、光学和电化学表征,以评估合成条件对析氧反应(OER)性能的影响。X射线衍射(XRD)证实形成了具有面心立方对称性的单相尖晶石结构。紫外-可见光谱显示带隙随煅烧温度发生位移,表明电子结构发生了细微变化,这可能会影响催化行为。S-HEO 800样品表现出最高的催化活性,在10 mA cm下过电位为316 mV。电化学测试显示出优异的短期耐久性,电极在10 mA cm下保持稳定性能24小时。场发射枪扫描电子显微镜(FEGSEM)分析表明,粒径随煅烧温度升高而增大,范围从96 nm(S-HEO 800)到475 nm(S-HEO 1000)。X射线光电子能谱(XPS)显示S-HEO 800表面Cr、Cr和Ni离子浓度较高,与其优异的OER性能相关。此外,拉曼光谱和傅里叶变换红外光谱证实了尖晶石相的形成,并提供了有关金属-氧键的见解。电化学阻抗谱(EIS)结果表明,S-HEO 800表现出最低的电荷转移电阻(R),进一步支持了其增强的催化行为。这些发现证明了聚乙烯吡咯烷酮辅助溶胶-凝胶法在制备具有可调形态的定制高熵氧化物方面的潜力,使其成为能量转换应用,特别是水电解领域有前景的候选材料。