Suppr超能文献

对倒数第二节间的整合蛋白质组学和代谢组学分析揭示了在水分胁迫下不同大麦基因型的再动员效率。

Integrated proteome and metabolome analysis of the penultimate internodes revealing remobilization efficiency in contrasting barley genotypes under water stress.

机构信息

Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.

Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA.

出版信息

Sci Rep. 2024 Nov 16;14(1):28312. doi: 10.1038/s41598-024-79598-3.

Abstract

The remobilization of stored assimilates from stems to seeds plays a pivotal role in augmenting barley yield, particularly under water stress conditions. This study examines the molecular mechanisms underlying stem reserve utilization by conducting a comparative analysis of the proteome and metabolome across three barley contrasting genotypes: Yousef, Morocco, and PBYT17. Evaluations were performed at 21 and 28 days after anthesis (DAA) under both water stress and control conditions. The results indicate that the Yousef genotype exhibits superior remobilization of stem reserves, thereby demonstrating its potential to thrive even in adverse environmental conditions. Utilizing advanced quantitative proteomics and targeted metabolomics, this investigation identified a significant number of metabolites and proteins exhibiting differential accumulation across the genotypes. Specifically, 17 metabolites and 1580 proteins were catalogued, highlighting the intricate biochemical responses to water stress. Noteworthy enzymes such as sucrose synthase, inositol monophosphatase 3, and galactokinase were found to be closely associated with remobilization efficiency. In the drought-tolerant genotype, these enzymes maintained stable levels, in stark contrast to the decline observed in the susceptible genotype. This stability is crucial for promoting seed development through ascorbic acid synthesis and for mitigating oxidative stress, which is exacerbated by drought conditions. The elevated levels of certain metabolites, including glucose 6-phosphate, and UDP-glucose, in the drought-tolerant genotype suggest a robust mechanism for maintaining signalling molecules for carbon availability, which is then instrumental in regulating plant growth and seed size development. The findings from this study strongly imply that the drought-tolerant genotype, through enhanced antioxidant capacity, can effectively produce energy-rich storage compounds, thereby optimizing carbon allocation under water stress. Such insights are invaluable for future breeding strategies aimed at improving barley resilience in the face of climate variability.

摘要

茎中储存的同化物向种子的再转移在提高大麦产量方面起着关键作用,尤其是在水分胁迫条件下。本研究通过对三个不同大麦基因型(Yousef、摩洛哥和 PBYT17)的蛋白质组和代谢组进行比较分析,研究了茎储备利用的分子机制。在水分胁迫和对照条件下,分别在授粉后 21 天和 28 天进行评估。结果表明,Yousef 基因型表现出更好的茎储备再转移能力,因此即使在不利的环境条件下也有潜力茁壮成长。本研究利用先进的定量蛋白质组学和靶向代谢组学,鉴定出了大量在不同基因型中表现出差异积累的代谢物和蛋白质。具体而言,鉴定出了 17 种代谢物和 1580 种蛋白质,突出了对水分胁迫的复杂生化反应。值得注意的是,蔗糖合酶、肌醇单磷酸酶 3 和半乳糖激酶等酶与再转移效率密切相关。在耐旱基因型中,这些酶保持稳定水平,与易感基因型中观察到的下降形成鲜明对比。这种稳定性对于通过抗坏血酸合成促进种子发育以及减轻由干旱条件加剧的氧化应激至关重要。耐旱基因型中某些代谢物(包括葡萄糖 6-磷酸和 UDP-葡萄糖)水平升高表明,其具有维持与碳可用性相关的信号分子的稳健机制,这对于调节植物生长和种子大小发育至关重要。本研究的结果强烈表明,耐旱基因型通过增强抗氧化能力,可以有效地产生富含能量的储存化合物,从而在水分胁迫下优化碳分配。这些发现对于未来旨在提高大麦对气候变化适应能力的育种策略具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef53/11569251/945e4a127a94/41598_2024_79598_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验