Suppr超能文献

构建基因组选择的训练集,以在候选群体中识别优良基因型。

Constructing training sets for genomic selection to identify superior genotypes in candidate populations.

机构信息

Department of Agronomy, National Taiwan University, Taipei, Taiwan.

Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA.

出版信息

Theor Appl Genet. 2024 Nov 17;137(12):270. doi: 10.1007/s00122-024-04766-y.

Abstract

Approaches for constructing training sets in genomic selection are proposed to efficiently identify top-performing genotypes from a breeding population. Identifying superior genotypes from a candidate population is a key objective in plant breeding programs. This study evaluates various methods for the training set optimization in genomic selection, with the goal of enhancing efficiency in discovering top-performing genotypes from a breeding population. Additionally, two approaches, inspired by classical optimal design criteria, are proposed to expand the search space for the best genotypes and compared with methods focusing on maximizing accuracy in breeding value prediction. Evaluation metrics such as normalized discounted cumulative gain, Spearman's rank correlation, and Pearson's correlation are employed to assess performance in both simulation studies and real trait analyses. Overall, for candidate populations lacking a strong subpopulation structure, a ridge regression-based method, referred to as is recommended. For candidate populations with a strong subpopulation structure, a heuristic-based version of generalized coefficient of determination and a D-optimality-like method that maximizes overall genomic variation are preferred approaches for the primary objective of plant breeding. For populations with a large number of candidates, a proposed ranking method ( ) can first be used to down-scale the candidate population, after which a heuristic-based method is employed to identify the best genotypes. Notably, the proposed has been verified to be equivalent to the original version, known as , but its implementation is much more computationally efficient.

摘要

提出了构建基因组选择训练集的方法,以从育种群体中有效识别表现最佳的基因型。从候选群体中鉴定出优良基因型是植物育种计划的一个关键目标。本研究评估了基因组选择中训练集优化的各种方法,旨在提高从育种群体中发现表现最佳基因型的效率。此外,还提出了两种基于经典最优设计标准的方法来扩展最佳基因型的搜索空间,并与专注于最大化育种值预测准确性的方法进行了比较。使用归一化折扣累积增益、Spearman 秩相关和 Pearson 相关等评估指标,在模拟研究和真实性状分析中评估性能。总体而言,对于缺乏强亚群结构的候选群体,推荐基于岭回归的方法 。对于具有强亚群结构的候选群体,基于启发式的广义决定系数的版本 和最大化整体基因组变异的 D-最优方法 是植物育种的主要目标的首选方法。对于候选人数众多的群体,可以首先使用提出的排序方法 ( ) 对候选群体进行降维,然后使用基于启发式的方法来识别最佳基因型。值得注意的是,所提出的 已被验证等同于原始版本 ,称为 ,但它的实现效率更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2f4/11570567/27e96b81807c/122_2024_4766_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验