Suppr超能文献

利用高级冬小麦育种材料对面粉产量和粉质仪品质特性进行基因组预测和全基因组关联研究。

Genomic Prediction and Genome-Wide Association Studies of Flour Yield and Alveograph Quality Traits Using Advanced Winter Wheat Breeding Material.

机构信息

Nordic Seed A/S, 8300 Odder, Denmark.

Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark.

出版信息

Genes (Basel). 2019 Aug 31;10(9):669. doi: 10.3390/genes10090669.

Abstract

Use of genetic markers and genomic prediction might improve genetic gain for quality traits in wheat breeding programs. Here, flour yield and Alveograph quality traits were inspected in 635 F winter wheat breeding lines from two breeding cycles. Genome-wide association studies revealed single nucleotide polymorphisms (SNPs) on chromosome 5D significantly associated with flour yield, Alveograph P (dough tenacity), and Alveograph W (dough strength). Additionally, SNPs on chromosome 1D were associated with Alveograph P and W, SNPs on chromosome 1B were associated with Alveograph P, and SNPs on chromosome 4A were associated with Alveograph L (dough extensibility). Predictive abilities based on genomic best linear unbiased prediction (GBLUP) models ranged from 0.50 for flour yield to 0.79 for Alveograph W based on a leave-one-out cross-validation strategy. Predictive abilities were negatively affected by smaller training set sizes, lower genetic relationship between lines in training and validation sets, and by genotype-environment (G×E) interactions. Bayesian Power Lasso models and genomic feature models resulted in similar or slightly improved predictions compared to GBLUP models. SNPs with the largest effects can be used for screening large numbers of lines in early generations in breeding programs to select lines that potentially have good quality traits. In later generations, genomic predictions might be used for a more accurate selection of high quality wheat lines.

摘要

利用遗传标记和基因组预测可以提高小麦育种计划中质量性状的遗传增益。在这里,检查了来自两个育种周期的 635 个 F 型冬小麦育成系的面粉产量和拉伸仪质量性状。全基因组关联研究揭示了染色体 5D 上与面粉产量、拉伸仪 P(面团韧性)和拉伸仪 W(面团强度)显著相关的单核苷酸多态性(SNP)。此外,染色体 1D 上的 SNP 与拉伸仪 P 和 W 相关,染色体 1B 上的 SNP 与拉伸仪 P 相关,染色体 4A 上的 SNP 与拉伸仪 L(面团延展性)相关。基于基因组最佳线性无偏预测(GBLUP)模型的预测能力范围从面粉产量的 0.50 到拉伸仪 W 的 0.79,基于留一交叉验证策略。预测能力受到训练集规模较小、训练和验证集之间系的遗传关系较低以及基因型-环境(G×E)相互作用的负面影响。贝叶斯 Power Lasso 模型和基因组特征模型与 GBLUP 模型相比,产生了相似或略有改进的预测。具有最大效应的 SNP 可用于在育种计划的早期世代筛选大量系,以选择具有潜在良好质量性状的系。在以后的世代中,基因组预测可能用于更准确地选择高质量的小麦系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9e8/6770321/816740b12375/genes-10-00669-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验