Suppr超能文献

使用变分自编码器(VAE)、生成对抗网络(GAN)和迁移学习增强脊柱CT扫描数据集以改进椎体压缩骨折的检测。

Augmenting a spine CT scans dataset using VAEs, GANs, and transfer learning for improved detection of vertebral compression fractures.

作者信息

El Kojok Zeina, Al Khansa Hadi, Trad Fouad, Chehab Ali

机构信息

Electrical and Computer Engineering, American University of Beirut, Beirut, Lebanon.

Electrical and Computer Engineering, American University of Beirut, Beirut, Lebanon.

出版信息

Comput Biol Med. 2025 Jan;184:109446. doi: 10.1016/j.compbiomed.2024.109446. Epub 2024 Nov 16.

Abstract

In recent years, deep learning has become a popular tool to analyze and classify medical images. However, challenges such as limited data availability, high labeling costs, and privacy concerns remain significant obstacles. As such, generative models have been extensively explored as a solution to generate new images and overcome the stated challenges. In this paper, we augment a dataset of chest CT scans for Vertebral Compression Fractures (VCFs) collected from the American University of Beirut Medical Center (AUBMC), specifically targeting the detection of incidental fractures that are often overlooked in routine chest CTs, as these scans are not typically focused on spinal analysis. Our goal is to enhance AI systems to enable automated early detection of such incidental fractures, addressing a critical healthcare gap and leading to improved patient outcomes by catching fractures that might otherwise go undiagnosed. We first generate a synthetic dataset based on the segmented CTSpine1K dataset to simulate real grayscale data that aligns with our specific scenario. Then, we use this generated data to evaluate the generative capabilities of Deep Convolutional Generative Adverserial Networks (DCGANs), variational autoencoders (VAEs), and VAE-GAN models. The VAE-GAN model demonstrated the highest performance, achieving a Fréchet Inception Distance (FID) five times lower than the other architectures. To adapt this model to real-image scenarios, we perform transfer learning on the GAN, training it with the real dataset collected from AUBMC and generating additional samples. Finally, we train a CNN using augmented datasets that include both real and generated synthetic data and compare its performance to training on real data alone. We then evaluate the model exclusively on a test set composed of real images to assess the effect of the generated data on real-world performance. We find that training on augmented datasets significantly improves the classification accuracy on a test set composed of real images by 16 %, increasing it from 73 % to 89 %. This improvement demonstrates that the generated data is of high quality and enhances the model's ability to perform well against unseen, real data.

摘要

近年来,深度学习已成为分析和分类医学图像的常用工具。然而,数据可用性有限、标注成本高以及隐私问题等挑战仍然是重大障碍。因此,生成模型作为生成新图像并克服上述挑战的解决方案已得到广泛探索。在本文中,我们扩充了从贝鲁特美国大学医疗中心(AUBMC)收集的用于椎体压缩骨折(VCF)的胸部CT扫描数据集,特别针对常规胸部CT中经常被忽视的偶然骨折的检测,因为这些扫描通常不专注于脊柱分析。我们的目标是增强人工智能系统,以实现对此类偶然骨折的自动早期检测,填补关键的医疗保健空白,并通过发现否则可能未被诊断的骨折来改善患者预后。我们首先基于分割后的CTSpine1K数据集生成一个合成数据集,以模拟与我们的特定场景相符的真实灰度数据。然后,我们使用这个生成的数据来评估深度卷积生成对抗网络(DCGAN)、变分自编码器(VAE)和VAE - GAN模型的生成能力。VAE - GAN模型表现出最高的性能,其Fréchet初始距离(FID)比其他架构低五倍。为了使该模型适应真实图像场景,我们对生成对抗网络进行迁移学习,使用从AUBMC收集的真实数据集对其进行训练并生成额外的样本。最后,我们使用包括真实数据和生成的合成数据的扩充数据集训练一个卷积神经网络(CNN),并将其性能与仅使用真实数据训练的情况进行比较。然后,我们专门在由真实图像组成的测试集上评估该模型,以评估生成数据对实际性能的影响。我们发现,在扩充数据集上进行训练可显著提高由真实图像组成的测试集上的分类准确率16%,从73%提高到89%。这一改进表明生成的数据质量很高,并增强了模型对未见的真实数据的良好表现能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验