School of Computer Information Engineering, Shanxi Technology and Business University, Taiyuan, China.
Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
J Cancer Res Clin Oncol. 2024 Nov 18;150(12):505. doi: 10.1007/s00432-024-06002-y.
In current clinical medicine, pathological image diagnosis is the gold standard for cancer diagnosis. After pathologists determine whether breast lesions are malignant or benign, further sub-type classification is often necessary.
For this task, this study designed a multi-classification model for breast cancer pathological images based on a two-stage hybrid network. Due to limited sample size for breast sub-type data, this study selected the ResNet34 network as the base network and improved it as the first-level convolutional network, using transfer learning to assist network training. In order to compensate for the lack of long-distance dependencies in the convolutional network, the second-level network was designed to use Long Short-Term Memory (LSTM) to capture contextual information in the images for predictive classification.
For the 8 sub-types of breast cancer classification on the BreakHis (40×, 100×, 200×, 400×) dataset, the ensemble model achieved accuracy rates of 93.67%, 97.08%, 98.01%, and 94.73% respectively. For the 4 sub-types of breast cancer classification on the ICIAR2018 (200×) dataset, the ensemble model achieved accuracy, precision, recall, and F1 Score rates of 93.75%, 92.5%, 92.5%, and 92.5% respectively.
The results show that the multi-classification model proposed in this study outperforms other methods in terms of classification performance, and further demonstrate that the proposed RFSAM module is beneficial for improving model performance.
在当前临床医学中,病理图像诊断是癌症诊断的金标准。病理学家确定了乳房病变是恶性还是良性后,通常还需要进一步进行亚型分类。
为此,本研究设计了一种基于两阶段混合网络的乳腺癌病理图像多分类模型。由于乳房亚型数据的样本量有限,本研究选择 ResNet34 网络作为基础网络,并对其进行改进作为第一级卷积网络,使用迁移学习辅助网络训练。为了弥补卷积网络中长距离依赖关系的不足,第二级网络设计使用长短时记忆(LSTM)来捕获图像中的上下文信息,进行预测分类。
在 BreakHis(40×、100×、200×、400×)数据集的 8 种乳腺癌亚型分类中,集成模型的准确率分别为 93.67%、97.08%、98.01%和 94.73%。在 ICIAR2018(200×)数据集的 4 种乳腺癌亚型分类中,集成模型的准确率、精度、召回率和 F1 评分分别为 93.75%、92.5%、92.5%和 92.5%。
结果表明,与其他方法相比,本研究提出的多分类模型在分类性能方面表现更优,进一步证明了所提出的 RFSAM 模块有利于提高模型性能。