Suppr超能文献

在Monolix和NONMEM中实现的考虑个体间变异性的低维神经常微分方程。

Low-dimensional neural ordinary differential equations accounting for inter-individual variability implemented in Monolix and NONMEM.

作者信息

Bräm Dominic Stefan, Steiert Bernhard, Pfister Marc, Steffens Britta, Koch Gilbert

机构信息

Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.

Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2025 Jan;14(1):5-16. doi: 10.1002/psp4.13265. Epub 2024 Nov 17.

Abstract

Neural ordinary differential equations (NODEs) are an emerging machine learning (ML) method to model pharmacometric (PMX) data. Combining mechanism-based components to describe "known parts" and neural networks to learn "unknown parts" is a promising ML-based PMX approach. In this work, the implementation of low-dimensional NODEs in two widely applied PMX software packages (Monolix and NONMEM) is explained. Inter-individual variability is introduced to NODEs and proposals for the practical implementation of NODEs in such software are presented. The potential of such implementations is shown on various demonstrational datasets available in the Monolix model library, including pharmacokinetic (PK), pharmacodynamic (PD), target-mediated drug disposition (TMDD), and survival analyses. All datasets were fitted with NODEs in Monolix and NONMEM and showed comparable results to classical modeling approaches. Model codes for demonstrated PK, PKPD, TMDD applications are made available, allowing a reproducible and straight-forward implementation of NODEs in available PMX software packages.

摘要

神经常微分方程(NODEs)是一种新兴的机器学习(ML)方法,用于对药代动力学(PMX)数据进行建模。将基于机制的组件结合起来描述“已知部分”,并利用神经网络学习“未知部分”,是一种很有前景的基于ML的PMX方法。在这项工作中,解释了低维NODEs在两个广泛应用的PMX软件包(Monolix和NONMEM)中的实现。将个体间变异性引入NODEs,并提出了在这类软件中实际实现NODEs的建议。在Monolix模型库中可用的各种演示数据集上展示了这种实现的潜力,包括药代动力学(PK)、药效动力学(PD)、靶点介导的药物处置(TMDD)和生存分析。所有数据集都在Monolix和NONMEM中用NODEs进行了拟合,结果与经典建模方法相当。提供了已演示的PK、PKPD、TMDD应用的模型代码,使得在可用的PMX软件包中能够以可重复且直接的方式实现NODEs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83df/11706426/8944178c3305/PSP4-14-5-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验