Suppr超能文献

利用神经常微分方程处理达巴万星在稀疏临床数据中的群体药代动力学

Leveraging Neural ODEs for Population Pharmacokinetics of Dalbavancin in Sparse Clinical Data.

作者信息

Giacometti Tommaso, Rocchi Ettore, Cojutti Pier Giorgio, Magnani Federico, Remondini Daniel, Pea Federico, Castellani Gastone

机构信息

Department of Physics and Astronomy, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.

INFN Istituto Nazionale di Fisica Nucleare, 40127 Bologna, Italy.

出版信息

Entropy (Basel). 2025 Jun 5;27(6):602. doi: 10.3390/e27060602.

Abstract

This study investigates the use of Neural Ordinary Differential Equations (NODEs) as an alternative to traditional compartmental models and Nonlinear Mixed-Effects (NLME) models for drug concentration prediction in pharmacokinetics. Unlike standard models that rely on strong assumptions and often struggle with high-dimensional covariate relationships, NODEs offer a data-driven approach, learning differential equations directly from data while integrating covariates. To evaluate their performance, NODEs were applied to a real-world Dalbavancin pharmacokinetic dataset comprising 218 patients and compared against a two-compartment model and an NLME within a cross-validation framework, which ensures an evaluation of robustness. Given the challenge of limited data availability, a data augmentation strategy was employed to pre-train NODEs. Their predictive performance was assessed both with and without covariates, while model explainability was analyzed using Shapley additive explanations (SHAP) values. Results show that, in the absence of covariates, NODEs performed comparably to state-of-the-art NLME models. However, when covariates were incorporated, NODEs demonstrated superior predictive accuracy. SHAP analyses further revealed how NODEs leverage covariates in their predictions. These results establish NODEs as a promising alternative for pharmacokinetic modeling, particularly in capturing complex covariate interactions, even when dealing with sparse and small datasets, thus paving the way for improved drug concentration predictions and personalized treatment strategies in precision medicine.

摘要

本研究探讨了使用神经常微分方程(NODEs)作为传统房室模型和非线性混合效应(NLME)模型的替代方法,用于药代动力学中药物浓度预测。与依赖强假设且常难以处理高维协变量关系的标准模型不同,NODEs提供了一种数据驱动的方法,直接从数据中学习微分方程并整合协变量。为评估其性能,将NODEs应用于包含218名患者的真实世界达巴万星药代动力学数据集,并在交叉验证框架内与二室模型和NLME模型进行比较,以确保对稳健性进行评估。鉴于数据可用性有限的挑战,采用了数据增强策略对NODEs进行预训练。在有和没有协变量的情况下评估了它们的预测性能,同时使用Shapley加法解释(SHAP)值分析了模型的可解释性。结果表明,在没有协变量的情况下,NODEs的表现与最先进的NLME模型相当。然而,当纳入协变量时,NODEs表现出更高的预测准确性。SHAP分析进一步揭示了NODEs在预测中如何利用协变量。这些结果表明NODEs是药代动力学建模的一种有前途的替代方法,特别是在捕捉复杂的协变量相互作用方面,即使在处理稀疏和小数据集时也是如此,从而为精准医学中改进药物浓度预测和个性化治疗策略铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a190/12192077/e229f1f7c86a/entropy-27-00602-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验