Suppr超能文献

基于机器学习的营养和炎症指标预测肺栓塞预后。

Machine Learning-Based Prediction of Pulmonary Embolism Prognosis Using Nutritional and Inflammatory Indices.

机构信息

Department of Pulmonary and Critical Care Medicine, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.

Department of Pharmacy, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.

出版信息

Clin Appl Thromb Hemost. 2024 Jan-Dec;30:10760296241300484. doi: 10.1177/10760296241300484.

Abstract

PURPOSE

This study aimed to create and assess machine learning (ML) models that utilize nutritional and inflammatory indices, focusing on the advanced lung cancer inflammation index (ALI) and neutrophil-to-albumin ratio (NAR), to improve the prediction accuracy of PE prognosis.

PATIENTS AND METHODS

We conducted a retrospective analysis of 312 patients, comprising 254 survivors and 58 non-survivors. The Boruta algorithm was used to identify significant variables, and four ML models (XGBoost, Random Forest, Logistic Regression, and SVM) were employed to analyze the clinical data and assess the performance of the models.

RESULTS

The XGBoost model, with optimal hyperparameters, achieved the best performance, with an accuracy of 0.882, an F1-score of 0.889, a precision of 0.917, a sensitivity of 0.863, a specificity of 0.905, and an AUC of 0.873. Analysis of feature importance indicated that the most critical predictors across models were respiratory failure, log-transformed ALI, albumin level, age, diastolic blood pressure, and NAR.

CONCLUSION

The ML-based prediction models effectively predicted the prognosis of PE, with the XGBoost model exhibiting good performance. Respiratory failure, ALI, albumin level, age, diastolic blood pressure, and NAR were correlated with PE prognosis.

摘要

目的

本研究旨在创建和评估机器学习 (ML) 模型,这些模型利用营养和炎症指标,重点关注先进的肺癌炎症指数 (ALI) 和中性粒细胞与白蛋白比值 (NAR),以提高 PE 预后预测的准确性。

患者和方法

我们对 312 名患者进行了回顾性分析,其中 254 名幸存者和 58 名非幸存者。我们使用 Boruta 算法来识别重要变量,并使用四种 ML 模型(XGBoost、随机森林、Logistic 回归和 SVM)来分析临床数据并评估模型的性能。

结果

具有最佳超参数的 XGBoost 模型表现最佳,准确率为 0.882,F1 得分为 0.889,精度为 0.917,灵敏度为 0.863,特异性为 0.905,AUC 为 0.873。特征重要性分析表明,跨模型最关键的预测因子是呼吸衰竭、对数化 ALI、白蛋白水平、年龄、舒张压和 NAR。

结论

基于 ML 的预测模型有效地预测了 PE 的预后,XGBoost 模型表现良好。呼吸衰竭、ALI、白蛋白水平、年龄、舒张压和 NAR 与 PE 预后相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd1e/11571247/8319a9a3b1ca/10.1177_10760296241300484-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验