Suppr超能文献

当前人工智能程序对视网膜/玻璃体疾病及治疗方法的知识水平评估与比较

Evaluation and Comparison of the Knowledge Levels of Current Artificial Intelligence Programs on Retinal/Vitreous Diseases and Treatment Methods.

作者信息

Sensoy Eyupcan, Citirik Mehmet

机构信息

Department of Ophthalmology, Ankara Etlik City Hospital, Ankara, Turkey.

出版信息

J Curr Ophthalmol. 2024 Oct 16;36(1):78-81. doi: 10.4103/joco.joco_192_23. eCollection 2024 Jan-Mar.

Abstract

PURPOSE

To evaluate the answers to multiple-choice questions about retina and vitreous diseases and treatment modalities of Chat Generative Pre-Trained Transformer (ChatGPT), Bard, and Bing artificial intelligence chatbots, examining the level of knowledge about these subjects, and investigating the existence of their superiority over each other.

METHODS

Forty-six questions related to retinal and vitreous diseases and treatment modalities were asked to ChatGPT, Bing, and Bard chatbots.

RESULTS

The Bing artificial intelligence chatbot correctly answered 76.1% of the questions. ChatGPT and Bard artificial intelligence chatbots correctly answered 60.9% of the questions. No statistically significant difference was observed between the rates of correct and incorrect answers to the questions on the three artificial intelligence chatbots ( = 0.206).

CONCLUSIONS

Artificial intelligence chatbots can be used to access accurate information about retinal and vitreous diseases and treatment modalities. However, the information obtained may not always be correct, and care should be taken about its use and results.

摘要

目的

评估聊天生成预训练变换器(ChatGPT)、巴德(Bard)和必应(Bing)人工智能聊天机器人对视网膜和玻璃体疾病及治疗方式的多项选择题的回答,考察它们对这些主题的知识水平,并探究它们相互之间是否存在优势。

方法

向ChatGPT、Bing和Bard聊天机器人提出了46个与视网膜和玻璃体疾病及治疗方式相关的问题。

结果

必应人工智能聊天机器人正确回答了76.1%的问题。ChatGPT和巴德人工智能聊天机器人正确回答了60.9%的问题。在这三个人工智能聊天机器人对问题的正确和错误回答率之间未观察到统计学上的显著差异(P = 0.206)。

结论

人工智能聊天机器人可用于获取有关视网膜和玻璃体疾病及治疗方式的准确信息。然而,获得的信息可能并不总是正确的,在使用其信息和结果时应谨慎。

相似文献

6
Evaluation of Current Artificial Intelligence Programs on the Knowledge of Glaucoma.当前人工智能程序对青光眼知识的评估
Klin Monbl Augenheilkd. 2024 Oct;241(10):1140-1144. doi: 10.1055/a-2327-8484. Epub 2024 Jul 24.

本文引用的文献

6
The current state of artificial intelligence in ophthalmology.人工智能在眼科学中的应用现状。
Surv Ophthalmol. 2019 Mar-Apr;64(2):233-240. doi: 10.1016/j.survophthal.2018.09.002. Epub 2018 Sep 22.
7
Deep learning applications in ophthalmology.深度学习在眼科中的应用。
Curr Opin Ophthalmol. 2018 May;29(3):254-260. doi: 10.1097/ICU.0000000000000470.
8
Electronic Health Records: Then, Now, and in the Future.电子健康记录:过去、现在与未来。
Yearb Med Inform. 2016 May 20;Suppl 1(Suppl 1):S48-61. doi: 10.15265/IYS-2016-s006.
9
The coming of age of artificial intelligence in medicine.人工智能在医学领域的成熟发展。
Artif Intell Med. 2009 May;46(1):5-17. doi: 10.1016/j.artmed.2008.07.017. Epub 2008 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验