Suppr超能文献

检验人工智能程序在神经眼科疾病方面的能力并分析它们的相对优势。

Examining the competence of artificial intelligence programs in neuro-ophthalmological disorders and analyzing their comparative superiority.

作者信息

Sensoy Eyupcan, Citirik Mehmet

机构信息

Department of Ophthalmology, Ankara Etlik City Hospital, Ankara, Turkey.

出版信息

Oman J Ophthalmol. 2024 Oct 24;17(3):348-351. doi: 10.4103/ojo.ojo_19_24. eCollection 2024 Sep-Dec.

Abstract

BACKGROUND

This study aims to evaluate the knowledge levels of chat generative pretrained transformer (ChatGPT), Bing, and Bard programs, which are three different artificial intelligence chatbots offered to the market free of charge by various manufacturers, regarding neuro-ophthalmological diseases, to examine their usability, and to investigate the existence of their superiority to each other.

MATERIALS AND METHODS

Forty questions related to neuro-ophthalmological diseases were obtained from the study questions' section of the American Academy and Ophthalmology 2022-2023 Basic and Clinical Science Course Neuro-ophthalmology Book. The questions were posed to the ChatGPT, Bing, and Bard artificial intelligence chatbots. The answers were evaluated as correct or incorrect. The statistical relationship between the correct and incorrect answer rates offered by the artificial intelligence programs was tested.

RESULTS

The correct answer rates were given by the artificial intelligence programs to the questions asked: ChatGPT - 52.5%; Bing - 55%; and Bard - 65%. There was no statistically significant difference between the correct answer rates of the three artificial intelligence programs ( = 0.489, Pearson's Chi-square test).

CONCLUSION

Although information about neuro-ophthalmological diseases can be accessed quickly and accurately using up-to-date artificial intelligence programs, the answers given may not always be correct. Care should always be taken when evaluating the answers to the questions.

摘要

背景

本研究旨在评估由不同制造商免费提供给市场的三种不同人工智能聊天机器人,即聊天生成预训练变换器(ChatGPT)、必应(Bing)和巴德(Bard)程序,关于神经眼科疾病的知识水平,检验它们的可用性,并调查它们之间是否存在优越性。

材料与方法

从美国眼科学会2022 - 2023年基础与临床科学课程神经眼科学书籍的研究问题部分获取了40个与神经眼科疾病相关的问题。将这些问题抛给ChatGPT、必应和巴德人工智能聊天机器人。答案被评估为正确或错误。测试了人工智能程序给出的正确和错误答案率之间的统计关系。

结果

人工智能程序对所提问题给出的正确答案率如下:ChatGPT - 52.5%;必应 - 55%;巴德 - 65%。这三个人工智能程序的正确答案率之间没有统计学显著差异( = 0.489,Pearson卡方检验)。

结论

尽管使用最新的人工智能程序可以快速准确地获取有关神经眼科疾病的信息,但给出的答案可能并不总是正确的。在评估问题答案时应始终谨慎。

相似文献

8
Evaluation of Current Artificial Intelligence Programs on the Knowledge of Glaucoma.当前人工智能程序对青光眼知识的评估
Klin Monbl Augenheilkd. 2024 Oct;241(10):1140-1144. doi: 10.1055/a-2327-8484. Epub 2024 Jul 24.

本文引用的文献

6
Artificial Intelligence Meets Neuro-Ophthalmology.人工智能遇见神经眼科学。
Asia Pac J Ophthalmol (Phila). 2022;11(2):111-125. doi: 10.1097/APO.0000000000000512.
7
The current state of artificial intelligence in ophthalmology.人工智能在眼科学中的应用现状。
Surv Ophthalmol. 2019 Mar-Apr;64(2):233-240. doi: 10.1016/j.survophthal.2018.09.002. Epub 2018 Sep 22.
8
Deep learning applications in ophthalmology.深度学习在眼科中的应用。
Curr Opin Ophthalmol. 2018 May;29(3):254-260. doi: 10.1097/ICU.0000000000000470.
9
Electronic Health Records: Then, Now, and in the Future.电子健康记录:过去、现在与未来。
Yearb Med Inform. 2016 May 20;Suppl 1(Suppl 1):S48-61. doi: 10.15265/IYS-2016-s006.
10
The coming of age of artificial intelligence in medicine.人工智能在医学领域的成熟发展。
Artif Intell Med. 2009 May;46(1):5-17. doi: 10.1016/j.artmed.2008.07.017. Epub 2008 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验