Saini Manali, Afrin Humayra, Sotoudehnia Setayesh, Fatemi Mostafa, Alizad Azra
Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
IEEE Access. 2024;12:60541-60555. doi: 10.1109/access.2024.3394808. Epub 2024 Apr 29.
Automated and precise segmentation of breast lesions can facilitate early diagnosis of breast cancer. Recent research studies employ deep learning for automatic segmentation of breast lesions using ultrasound imaging. Numerous studies introduce somewhat complex modifications to the well adapted segmentation network, U-Net for improved segmentation, however, at the expense of increased computational time. Towards this aspect, this study presents a low complex deep learning network, i.e., dense multiplicative attention enhanced encoder decoder network, for effective breast lesion segmentation in the ultrasound images. For the first time in this context, two dense multiplicative attention components are utilized in the encoding layer and the output layer of an encoder-decoder network with depthwise separable convolutions, to selectively enhance the relevant features. A rigorous performance evaluation using two public datasets demonstrates that the proposed network achieves dice coefficients of 0.83 and 0.86 respectively with an average segmentation latency of 19. Further, a noise robustness study using an in-clinic recorded dataset without pre-processing indicates that the proposed network achieves dice coefficient of 0.72. Exhaustive comparison with some commonly used networks indicate its adeptness with low time and computational complexity demonstrating feasibility in real time.
乳腺病变的自动精确分割有助于乳腺癌的早期诊断。最近的研究利用深度学习对超声成像的乳腺病变进行自动分割。许多研究对适应性良好的分割网络U-Net进行了一些复杂的修改以改进分割效果,然而,这是以增加计算时间为代价的。针对这一方面,本研究提出了一种低复杂度的深度学习网络,即密集乘法注意力增强编码器-解码器网络,用于在超声图像中有效地分割乳腺病变。在此背景下,首次在具有深度可分离卷积的编码器-解码器网络的编码层和输出层中使用了两个密集乘法注意力组件,以选择性地增强相关特征。使用两个公共数据集进行的严格性能评估表明,所提出的网络分别实现了0.83和0.86的骰子系数,平均分割延迟为19。此外,使用未经预处理的临床记录数据集进行的噪声鲁棒性研究表明,所提出的网络实现了0.72的骰子系数。与一些常用网络的详尽比较表明,它在低时间和计算复杂度方面表现出色,证明了其在实时应用中的可行性。