Yun Juyoung, Abousamra Shahira, Li Chen, Gupta Rajarsi, Kurc Tahsin, Samaras Dimitris, Van Dyke Alison, Saltz Joel, Chen Chao
Stony Brook University, Department of Computer Science, USA.
Stony Brook University, Department of Biomedical Informatics, USA.
Conf Comput Vis Pattern Recognit Workshops. 2024 Jun;2024:6946-6954. doi: 10.1109/cvprw63382.2024.00688. Epub 2024 Sep 27.
Estimating uncertainty of a neural network is crucial in providing transparency and trustworthiness. In this paper, we focus on uncertainty estimation for digital pathology prediction models. To explore the large amount of unlabeled data in digital pathology, we propose to adopt novel learning method that can fully exploit unlabeled data. The proposed method achieves superior performance compared with different baselines including the celebrated Monte-Carlo Dropout. Closeup inspection of uncertain regions reveal insight into the model and improves the trustworthiness of the models.
估计神经网络的不确定性对于提供透明度和可信度至关重要。在本文中,我们专注于数字病理学预测模型的不确定性估计。为了探索数字病理学中大量的未标记数据,我们建议采用能够充分利用未标记数据的新型学习方法。与包括著名的蒙特卡洛随机失活在内的不同基线相比,所提出的方法取得了卓越的性能。对不确定区域的仔细检查揭示了对模型的洞察,并提高了模型的可信度。