Suppr超能文献

利用未标记数据进行肿瘤预测的不确定性估计

Uncertainty Estimation for Tumor Prediction with Unlabeled Data.

作者信息

Yun Juyoung, Abousamra Shahira, Li Chen, Gupta Rajarsi, Kurc Tahsin, Samaras Dimitris, Van Dyke Alison, Saltz Joel, Chen Chao

机构信息

Stony Brook University, Department of Computer Science, USA.

Stony Brook University, Department of Biomedical Informatics, USA.

出版信息

Conf Comput Vis Pattern Recognit Workshops. 2024 Jun;2024:6946-6954. doi: 10.1109/cvprw63382.2024.00688. Epub 2024 Sep 27.

Abstract

Estimating uncertainty of a neural network is crucial in providing transparency and trustworthiness. In this paper, we focus on uncertainty estimation for digital pathology prediction models. To explore the large amount of unlabeled data in digital pathology, we propose to adopt novel learning method that can fully exploit unlabeled data. The proposed method achieves superior performance compared with different baselines including the celebrated Monte-Carlo Dropout. Closeup inspection of uncertain regions reveal insight into the model and improves the trustworthiness of the models.

摘要

估计神经网络的不确定性对于提供透明度和可信度至关重要。在本文中,我们专注于数字病理学预测模型的不确定性估计。为了探索数字病理学中大量的未标记数据,我们建议采用能够充分利用未标记数据的新型学习方法。与包括著名的蒙特卡洛随机失活在内的不同基线相比,所提出的方法取得了卓越的性能。对不确定区域的仔细检查揭示了对模型的洞察,并提高了模型的可信度。

相似文献

1
Uncertainty Estimation for Tumor Prediction with Unlabeled Data.利用未标记数据进行肿瘤预测的不确定性估计
Conf Comput Vis Pattern Recognit Workshops. 2024 Jun;2024:6946-6954. doi: 10.1109/cvprw63382.2024.00688. Epub 2024 Sep 27.

本文引用的文献

1
Tackling prediction uncertainty in machine learning for healthcare.解决医疗保健机器学习中的预测不确定性。
Nat Biomed Eng. 2023 Jun;7(6):711-718. doi: 10.1038/s41551-022-00988-x. Epub 2022 Dec 29.
9
Representation learning: a review and new perspectives.表示学习:综述与新视角。
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828. doi: 10.1109/TPAMI.2013.50.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验