Suppr超能文献

深度学习神经网络在放射治疗剂量预测中蒙特卡罗随机失活和自助聚合法在性能及不确定性估计方面的比较

A comparison of Monte Carlo dropout and bootstrap aggregation on the performance and uncertainty estimation in radiation therapy dose prediction with deep learning neural networks.

作者信息

Nguyen Dan, Sadeghnejad Barkousaraie Azar, Bohara Gyanendra, Balagopal Anjali, McBeth Rafe, Lin Mu-Han, Jiang Steve

机构信息

Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, United States of America.

出版信息

Phys Med Biol. 2021 Feb 24;66(5):054002. doi: 10.1088/1361-6560/abe04f.

Abstract

Recently, artificial intelligence technologies and algorithms have become a major focus for advancements in treatment planning for radiation therapy. As these are starting to become incorporated into the clinical workflow, a major concern from clinicians is not whether the model is accurate, but whether the model can express to a human operator when it does not know if its answer is correct. We propose to use Monte Carlo Dropout (MCDO) and the bootstrap aggregation (bagging) technique on deep learning (DL) models to produce uncertainty estimations for radiation therapy dose prediction. We show that both models are capable of generating a reasonable uncertainty map, and, with our proposed scaling technique, creating interpretable uncertainties and bounds on the prediction and any relevant metrics. Performance-wise, bagging provides statistically significant reduced loss value and errors in most of the metrics investigated in this study. The addition of bagging was able to further reduce errors by another 0.34% for [Formula: see text] and 0.19% for [Formula: see text] on average, when compared to the baseline model. Overall, the bagging framework provided significantly lower mean absolute error (MAE) of 2.62, as opposed to the baseline model's MAE of 2.87. The usefulness of bagging, from solely a performance standpoint, does highly depend on the problem and the acceptable predictive error, and its high upfront computational cost during training should be factored in to deciding whether it is advantageous to use it. In terms of deployment with uncertainty estimations turned on, both methods offer the same performance time of about 12 s. As an ensemble-based metaheuristic, bagging can be used with existing machine learning architectures to improve stability and performance, and MCDO can be applied to any DL models that have dropout as part of their architecture.

摘要

最近,人工智能技术和算法已成为放射治疗治疗计划进展的主要焦点。随着这些技术开始融入临床工作流程,临床医生主要关心的不是模型是否准确,而是当模型不知道其答案是否正确时,它能否向人类操作员表达这一点。我们建议在深度学习(DL)模型上使用蒙特卡罗随机失活(MCDO)和自助聚合(装袋)技术,以产生放射治疗剂量预测的不确定性估计。我们表明,这两种模型都能够生成合理的不确定性图,并且通过我们提出的缩放技术,可以在预测和任何相关指标上创建可解释的不确定性和边界。在性能方面,装袋在本研究中调查的大多数指标上提供了具有统计学意义的降低损失值和误差。与基线模型相比,添加装袋平均能够进一步将[公式:见正文]的误差再降低0.34%,将[公式:见正文]的误差再降低0.19%。总体而言,装袋框架提供的平均绝对误差(MAE)显著更低,为2.62,而基线模型的MAE为2.87。仅从性能角度来看,装袋的有用性高度依赖于问题和可接受的预测误差,并且在决定是否使用它时应考虑其在训练期间高昂的前期计算成本。在开启不确定性估计的情况下进行部署时,两种方法的性能时间相同,约为12秒。作为一种基于集成的元启发式方法,装袋可与现有的机器学习架构一起使用,以提高稳定性和性能,并且MCDO可应用于任何将随机失活作为其架构一部分的DL模型。

相似文献

2
Can input reconstruction be used to directly estimate uncertainty of a dose prediction U-Net model?
Med Phys. 2024 Oct;51(10):7369-7377. doi: 10.1002/mp.17287. Epub 2024 Jul 12.
7
Multimodal radiotherapy dose prediction using a multi-task deep learning model.
Med Phys. 2024 Jun;51(6):3932-3949. doi: 10.1002/mp.17115. Epub 2024 May 6.
8
Clinical assessment of deep learning-based uncertainty maps in lung cancer segmentation.
Phys Med Biol. 2024 Jan 24;69(3). doi: 10.1088/1361-6560/ad1a26.

引用本文的文献

1
Prediction of genomic biomarkers for endometriosis using the transcriptomic dataset.
World J Clin Cases. 2025 Jul 16;13(20):104556. doi: 10.12998/wjcc.v13.i20.104556.
2
Uncertainty quantification in multi-parametric MRI-based meningioma radiotherapy target segmentation.
Front Oncol. 2025 Jan 28;15:1474590. doi: 10.3389/fonc.2025.1474590. eCollection 2025.
3
Artificial intelligence uncertainty quantification in radiotherapy applications - A scoping review.
Radiother Oncol. 2024 Dec;201:110542. doi: 10.1016/j.radonc.2024.110542. Epub 2024 Sep 17.
5
Artificial Intelligence Uncertainty Quantification in Radiotherapy Applications - A Scoping Review.
medRxiv. 2024 May 13:2024.05.13.24307226. doi: 10.1101/2024.05.13.24307226.
6
Artificial intelligence guided physician directive improves head and neck planning quality and practice Uniformity: A prospective study.
Clin Transl Radiat Oncol. 2023 Mar 10;40:100616. doi: 10.1016/j.ctro.2023.100616. eCollection 2023 May.
8
Advances in Automated Treatment Planning.
Semin Radiat Oncol. 2022 Oct;32(4):343-350. doi: 10.1016/j.semradonc.2022.06.004.
9

本文引用的文献

1
OpenKBP: The open-access knowledge-based planning grand challenge and dataset.
Med Phys. 2021 Sep;48(9):5549-5561. doi: 10.1002/mp.14845. Epub 2021 Jun 22.
4
Knowledge-based automated planning with three-dimensional generative adversarial networks.
Med Phys. 2020 Feb;47(2):297-306. doi: 10.1002/mp.13896. Epub 2019 Nov 29.
8
DoseNet: a volumetric dose prediction algorithm using 3D fully-convolutional neural networks.
Phys Med Biol. 2018 Dec 4;63(23):235022. doi: 10.1088/1361-6560/aaef74.
10
Knowledge-based automated planning for oropharyngeal cancer.
Med Phys. 2018 Jul;45(7):2875-2883. doi: 10.1002/mp.12930. Epub 2018 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验