Schneider Kristen, Chowdhury Murad, Tepper Mariano, Khan Jawad, Shortt Jonathan A, Gignoux Chris, Layer Ryan
Computer Science Department, University of Colorado, Boulder, CO, USA.
BioFrontiers Institute, University of Colorado, Boulder, CO, USA.
bioRxiv. 2024 Nov 3:2024.11.02.621671. doi: 10.1101/2024.11.02.621671.
Many patients do not experience optimal benefits from medical advances because clinical research does not adequately represent them. While the diversity of biomedical research cohorts is improving, ensuring that individual patients are adequately represented remains challenging. We propose a new approach, GenoSiS, which leverages machine learning-based similarity search to dynamically find patient-matched cohorts across different populations quickly. These cohorts could serve as reference cohorts to improve a range of clinical analyses, including disease risk score calculations and dosage decisions. While GenoSiS focuses on finding genetic similarity within a biobank, our similarity search architecture can be extended to represent other medically relevant patient characteristics and search other biobanks.
许多患者无法从医学进步中获得最佳益处,因为临床研究未能充分纳入他们。虽然生物医学研究队列的多样性正在改善,但确保个体患者得到充分纳入仍然具有挑战性。我们提出了一种新方法,即基因相似性搜索系统(GenoSiS),它利用基于机器学习的相似性搜索来快速动态地在不同人群中找到与患者匹配的队列。这些队列可作为参考队列,以改进一系列临床分析,包括疾病风险评分计算和剂量决策。虽然基因相似性搜索系统专注于在生物样本库中寻找基因相似性,但我们的相似性搜索架构可以扩展,以体现其他与医学相关的患者特征,并搜索其他生物样本库。