Suppr超能文献

模拟集装箱大豆中霉菌的实时检测与分级:基于挥发性微生物代谢产物和挥发性有机化合物的气相色谱-离子迁移谱分析见解

Real-time mildew detection and gradation in simulated containerized soybeans: Insights from GC-IMS analysis of mVOCs and VOCs.

作者信息

Song Xuejian, Qian Lili, Fu Lixue, Cao Rongan, Wang Xinhui, Chen Mingming

机构信息

College of Food Science Heilongjiang Bayi Agricultural University Daqing China.

Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province Daqing China.

出版信息

Food Sci Nutr. 2024 Jul 9;12(9):6772-6788. doi: 10.1002/fsn3.4302. eCollection 2024 Sep.

Abstract

In the context of bulk grain container transportation, the complex logistics can lead to grain mildew and subsequent economic losses. Therefore, there is a pressing need to explore swift and real-time mildew detection technology. Our investigation, simulating actual transportation conditions, revealed that , , and were the primary molds responsible for soybean mildew during container transportation. Utilizing gas chromatography-ion migration spectroscopy (GC-IMS), we analyzed the correlation between the mVOCs (microbial volatile organic compounds) produced by dominant mold and the VOCs emitted during soybean mildew. Principal Component Analysis (PCA) and clustering results demonstrated the distinctive identification of VOCs in soybeans with varying degrees of mildew. The mildew degree significantly influenced the content variation of VOCs. As the mildew degree increased, the concentrations of nonanal, octanal, etc. progressively decreased, contrasting with the rising levels of phenylacetaldehyde, 3-methyl-2-butenal, etc. Therefore, the combination of GC-IMS with chemometrics proves to be a viable method for identifying the mildew degree of soybeans. Therefore, this study underscores the importance of implementing effective mildew detection techniques in the challenging context of bulk grain container transportation.

摘要

在散粮集装箱运输过程中,复杂的物流情况可能导致粮食发霉并造成后续经济损失。因此,迫切需要探索快速实时的霉菌检测技术。我们的研究模拟实际运输条件,发现 、 和 是集装箱运输过程中导致大豆发霉的主要霉菌。利用气相色谱-离子迁移谱(GC-IMS),我们分析了优势霉菌产生的微生物挥发性有机化合物(mVOCs)与大豆发霉过程中排放的挥发性有机化合物(VOCs)之间的相关性。主成分分析(PCA)和聚类结果表明,不同霉变程度大豆中的VOCs具有明显的特征识别。霉变程度对VOCs的含量变化有显著影响。随着霉变程度的增加,壬醛、辛醛等的浓度逐渐降低,而苯乙醛、3-甲基-2-丁烯醛等的含量则上升。因此,GC-IMS与化学计量学相结合被证明是一种识别大豆霉变程度的可行方法。因此,本研究强调了在散粮集装箱运输这一具有挑战性的背景下实施有效霉菌检测技术的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5771/11561773/939e7a66761f/FSN3-12-6772-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验