Lee Ho Hin, Saunders Adam M, Kim Michael E, Remedios Samuel W, Remedios Lucas W, Tang Yucheng, Yang Qi, Yu Xin, Bao Shunxing, Cho Chloe, Mawn Louise A, Rex Tonia S, Schey Kevin L, Dewey Blake E, Spraggins Jeffrey M, Prince Jerry L, Huo Yuankai, Landman Bennett A
Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States.
Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States.
J Med Imaging (Bellingham). 2024 Nov;11(6):064004. doi: 10.1117/1.JMI.11.6.064004. Epub 2024 Nov 14.
Eye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of generalizing population-wise features of eye organs to an unbiased spatial reference.
To tackle these limitations, we propose a process for creating high-resolution unbiased eye atlases. First, to restore spatial details from scans with a low through-plane resolution compared with a high in-plane resolution, we apply a deep learning-based super-resolution algorithm. Then, we generate an initial unbiased reference with an iterative metric-based registration using a small portion of subject scans. We register the remaining scans to this template and refine the template using an unsupervised deep probabilistic approach that generates a more expansive deformation field to enhance the organ boundary alignment. We demonstrate this framework using magnetic resonance images across four different tissue contrasts, generating four atlases in separate spatial alignments.
When refining the template with sufficient subjects, we find a significant improvement using the Wilcoxon signed-rank test in the average Dice score across four labeled regions compared with a standard registration framework consisting of rigid, affine, and deformable transformations. These results highlight the effective alignment of eye organs and boundaries using our proposed process.
By combining super-resolution preprocessing and deep probabilistic models, we address the challenge of generating an eye atlas to serve as a standardized reference across a largely variable population.
人群中的眼睛形态差异显著,尤其是眼眶和视神经。这些差异限制了将眼部器官的总体特征推广到无偏差空间参考的可行性和稳健性。
为解决这些限制,我们提出了一种创建高分辨率无偏差眼图谱的流程。首先,为了从与高平面分辨率相比具有低层面分辨率的扫描中恢复空间细节,我们应用基于深度学习的超分辨率算法。然后,我们使用一小部分受试者扫描数据,通过基于迭代度量的配准生成初始无偏差参考。我们将其余扫描数据配准到该模板,并使用无监督深度概率方法对模板进行优化,该方法生成更广泛的变形场以增强器官边界对齐。我们使用四种不同组织对比度的磁共振图像演示了这个框架,在单独的空间对齐中生成了四个图谱。
当用足够数量的受试者优化模板时,与由刚性、仿射和可变形变换组成的标准配准框架相比,我们通过威尔科克森符号秩检验发现在四个标记区域的平均骰子分数上有显著提高。这些结果突出了使用我们提出的流程对眼部器官和边界进行有效对齐。
通过结合超分辨率预处理和深度概率模型,我们解决了生成眼图谱以作为在很大程度上可变人群中的标准化参考这一挑战。