Suppr超能文献

具有深度概率细化的超分辨率多对比度无偏眼图谱

Super-resolution multi-contrast unbiased eye atlases with deep probabilistic refinement.

作者信息

Lee Ho Hin, Saunders Adam M, Kim Michael E, Remedios Samuel W, Remedios Lucas W, Tang Yucheng, Yang Qi, Yu Xin, Bao Shunxing, Cho Chloe, Mawn Louise A, Rex Tonia S, Schey Kevin L, Dewey Blake E, Spraggins Jeffrey M, Prince Jerry L, Huo Yuankai, Landman Bennett A

机构信息

Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States.

Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States.

出版信息

J Med Imaging (Bellingham). 2024 Nov;11(6):064004. doi: 10.1117/1.JMI.11.6.064004. Epub 2024 Nov 14.

Abstract

PURPOSE

Eye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of generalizing population-wise features of eye organs to an unbiased spatial reference.

APPROACH

To tackle these limitations, we propose a process for creating high-resolution unbiased eye atlases. First, to restore spatial details from scans with a low through-plane resolution compared with a high in-plane resolution, we apply a deep learning-based super-resolution algorithm. Then, we generate an initial unbiased reference with an iterative metric-based registration using a small portion of subject scans. We register the remaining scans to this template and refine the template using an unsupervised deep probabilistic approach that generates a more expansive deformation field to enhance the organ boundary alignment. We demonstrate this framework using magnetic resonance images across four different tissue contrasts, generating four atlases in separate spatial alignments.

RESULTS

When refining the template with sufficient subjects, we find a significant improvement using the Wilcoxon signed-rank test in the average Dice score across four labeled regions compared with a standard registration framework consisting of rigid, affine, and deformable transformations. These results highlight the effective alignment of eye organs and boundaries using our proposed process.

CONCLUSIONS

By combining super-resolution preprocessing and deep probabilistic models, we address the challenge of generating an eye atlas to serve as a standardized reference across a largely variable population.

摘要

目的

人群中的眼睛形态差异显著,尤其是眼眶和视神经。这些差异限制了将眼部器官的总体特征推广到无偏差空间参考的可行性和稳健性。

方法

为解决这些限制,我们提出了一种创建高分辨率无偏差眼图谱的流程。首先,为了从与高平面分辨率相比具有低层面分辨率的扫描中恢复空间细节,我们应用基于深度学习的超分辨率算法。然后,我们使用一小部分受试者扫描数据,通过基于迭代度量的配准生成初始无偏差参考。我们将其余扫描数据配准到该模板,并使用无监督深度概率方法对模板进行优化,该方法生成更广泛的变形场以增强器官边界对齐。我们使用四种不同组织对比度的磁共振图像演示了这个框架,在单独的空间对齐中生成了四个图谱。

结果

当用足够数量的受试者优化模板时,与由刚性、仿射和可变形变换组成的标准配准框架相比,我们通过威尔科克森符号秩检验发现在四个标记区域的平均骰子分数上有显著提高。这些结果突出了使用我们提出的流程对眼部器官和边界进行有效对齐。

结论

通过结合超分辨率预处理和深度概率模型,我们解决了生成眼图谱以作为在很大程度上可变人群中的标准化参考这一挑战。

相似文献

1
Super-resolution multi-contrast unbiased eye atlases with deep probabilistic refinement.
J Med Imaging (Bellingham). 2024 Nov;11(6):064004. doi: 10.1117/1.JMI.11.6.064004. Epub 2024 Nov 14.
2
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.
Front Oncol. 2025 Jun 18;15:1480384. doi: 10.3389/fonc.2025.1480384. eCollection 2025.
3
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.
4
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
5
Probabilistic Presurgical Language fMRI Atlas of Patients with Brain Tumors.
AJNR Am J Neuroradiol. 2024 Nov 7;45(11):1798-1804. doi: 10.3174/ajnr.A8383.
6
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
9
Topical antimicrobial agents for treating foot ulcers in people with diabetes.
Cochrane Database Syst Rev. 2017 Jun 14;6(6):CD011038. doi: 10.1002/14651858.CD011038.pub2.
10
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.

本文引用的文献

1
Metrics reloaded: recommendations for image analysis validation.
Nat Methods. 2024 Feb;21(2):195-212. doi: 10.1038/s41592-023-02151-z. Epub 2024 Feb 12.
2
Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP).
Nat Cell Biol. 2023 Aug;25(8):1089-1100. doi: 10.1038/s41556-023-01194-w. Epub 2023 Jul 19.
3
Unsupervised Registration Refinement for Generating Unbiased Eye Atlas.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2653753. Epub 2023 Apr 3.
4
Supervised Deep Generation of High-Resolution Arterial Phase Computed Tomography Kidney Substructure Atlas.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2608290. Epub 2022 Apr 4.
5
Multi-contrast computed tomography healthy kidney atlas.
Comput Biol Med. 2022 Jul;146:105555. doi: 10.1016/j.compbiomed.2022.105555. Epub 2022 Apr 26.
6
Ultrawide field, distortion-corrected ocular shape estimation with MHz optical coherence tomography (OCT).
Biomed Opt Express. 2021 Aug 23;12(9):5770-5781. doi: 10.1364/BOE.428430. eCollection 2021 Sep 1.
7
Construction of a Multi-Phase Contrast Computed Tomography Kidney Atlas.
Proc SPIE Int Soc Opt Eng. 2021;11596. doi: 10.1117/12.2580561. Epub 2021 Feb 15.
8
Update of the EPTN atlas for CT- and MR-based contouring in Neuro-Oncology.
Radiother Oncol. 2021 Jul;160:259-265. doi: 10.1016/j.radonc.2021.05.013. Epub 2021 May 18.
9
SMORE: A Self-Supervised Anti-Aliasing and Super-Resolution Algorithm for MRI Using Deep Learning.
IEEE Trans Med Imaging. 2021 Mar;40(3):805-817. doi: 10.1109/TMI.2020.3037187. Epub 2021 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验